• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 6
  • 2
  • 1
  • Tagged with
  • 31
  • 31
  • 31
  • 8
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Probing exotic physics with pulsating white dwarfs

Kim, Agnès, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
22

Creating and measuring white dwarf photospheres in a terrestrial laboratory

Falcon, Ross Edward 16 September 2014 (has links)
As the ultimate fate of nearly all stars, including our Sun, white dwarfs (WDs) hold rich and informative histories in their observable light. To determine a fundamental parameter of WDs, mass, we perform the first measurement of the average gravitational redshift of an ensemble of WDs. We find a larger mean mass than that determined from the primary and expansive technique known as the spectroscopic method. The potential inaccuracy of this method has broad astrophysical implications, including for our understanding of Type 1a supernova progenitors and for constraining the age of the Universe. This motivates us to investigate the WD atmosphere models used with the spectroscopic method, particularly the input theoretical line profiles, by developing a new experimental platform to create plasmas at WD photospheric conditions (T_e ~ 1 eV, n_e ~ 10^17 cm^-3). Instead of observing WD spectra to infer the plasma conditions at the surface of the star, we set the conditions and measure the emergent spectra in the laboratory. X-rays from a z-pinch dynamic hohlraum generated at the Z Pulsed Power Facility at Sandia National Laboratories irradiate a gas cell to initiate formation of a large (120x20x10 mm or 24 cm^3) plasma. We observe multiple Balmer lines from our plasma in emission and in absorption simultaneously along relatively long (~120 mm) lines of sight perpendicular to the heating radiation. Using a large, radiation-driven plasma aides us to achieve homogeneity along our observed lines of sight. With time-resolved spectroscopy we measure lines at a range of electron densities that spans an order of magnitude, and we do this within one pulsed power shot experiment. Observing our plasma in absorption not only provides the signal-to-noise to measure relative line shapes, it allows us to measure relative line strengths because the lines share the same lower level population. This constrains the theoretical reduction factors used to describe ionization potential depression or the occupation probabilities associated with these Balmer lines. We compare our measured line shapes with the theoretical ones used in WD atmosphere models as part of the first fruits of this rich experimental platform. / text
23

Search for Close Binary Evolved Stars

Saffer, R. A., Liebert, J. 10 1900 (has links)
We report on a search for short -period binary systems composed of pairs of evolved stars. The search is being carried out concurrently with a program to characterize the kinematical properties of two different samples of stars. Each sample has produced one close binary candidate for which further spectroscopic observations are planned. We also recapitulate the discovery of a close detached binary system composed of two cool DA white dwarfs, and we discuss the null results of Ha observations of the suspected white dwarf /brown dwarf system G 29-38.
24

High Dispersion Observations of H alpha in the Suspected Brown Dwarf, White Dwarf Binary System G29-38

Liebert, J., Saffer, R. A., Pilachowski, C. A. 10 1900 (has links)
We report on high dispersion spectroscopy of the Ha absorption line of the cool DA white dwarf G 29 -38. This is the star for which a recently detected infrared excess has been suggested to be due to a possible brown dwarf companion by Zuckerman and Becklin (1986, 1987). Three echelle spectra obtained at the Multiple Mirror Telescope and at the Kitt Peak Mayall 4m telescope in 1987 December show no evidence for radial velocity variations larger than -'1.1 ± 8.7 km s -1 and are used to derive a weighted heliocentric radial velocity Vr = 33.7 ± 4.3 km s -1 for the white dwarf. No emission component from the hypothesized secondary star is detected. These negative results do not constitute strong evidence against the companion hypothesis, since the expected orbital velocity of the white dwarf component could be quite small, and the companion's line emission could be too faint to be detected. However, the observation of a sharp absorption line core restricts the possible rotation of the white dwarf to < 40 km s -1 and ensures that any surface magnetic field has a strength < 105 gauss. These results make it unlikely that the DA white dwarf has previously been in a cataclysmic variable accretion phase.
25

Substellar companions to white dwarves

Mullally, Fergal Robert, 1979- 28 August 2008 (has links)
We search for planets and brown dwarves around white dwarves (WDs). Finding extra-solar planets is the first step toward establishing the existence and abundance of life in the Universe. The low mass and luminosity of WDs make them ideal stars to search for low mass companion objects. Theoretical predictions generally agree that a star will consume and destroy close-in, low mass planets as it ascends the red giant and asymptotic giant branch evolutionary tracks, but larger mass objects and those further out will survive. The matter ejected from the star as it evolves into a white dwarf may also be accreted onto daughter planets, or may coalesce into a disk from which planets can form. We employ two techniques to search for planets and brown dwarves (BDs) around WDs. A subset of pulsating white dwarf stars have a pulsational stability that rivals pulsars and atomic clocks. When a planet is in orbit around a such a star the orbital motion of the star around the centre of mass is detectable as a change in arrival times of the otherwise stable pulsations. We search for, and find, a sample of suitable pulsators, monitor them for between three and four years, and place limits on companions by constraining the variation consistent with a 2.4M[subscript J] planet in a 4.6 year orbit. We also observe a large sample of WDs to search for a mid-infrared excess caused by the presence of sub-stellar companions. We present evidence for a potential binary system consisting of a WD and a BD on the basis of an observed excess flux at near and mind-infrared wavelengths. We also place limits on the presence of planetary mass companions around those stars and compare our results to predictions of planetary survival theories. Our findings do not support suggestions of planet formation or accretion of extra mass during stellar death.
26

Lives of White Dwarf Stars

Richer, Harvey 17 March 2008 (has links)
White dwarf stars are the burnt out remnants that remain after a star like the Sun has completed its nuclear evolution. In such a star there are no remaining nuclear energy sources, so the star evolves by simply radiating its stored thermal energy out into space. This may seem rather uninteresting, but in fact there is a wealth of physical phenomena that occur during this part of a star's life - from getting kicked at birth, to neutrino emission in early life, to some interesting high density physics, through to functioning as precise clocks that can provide an age for some of the oldest know stars in the Universe. Some of these phases will be illustrated with detailed observations taken recently with the Hubble Space Telescope.
27

Substellar companions to white dwarves

Mullally, Fergal Robert, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
28

Probing the Gravitational Dependence of the Fine-Structure Constant from Observations of White Dwarf Stars

Bainbridge, Matthew, Barstow, Martin, Reindl, Nicole, Tchang-Brillet, W.-Ü, Ayres, Thomas, Webb, John, Barrow, John, Hu, Jiting, Holberg, Jay, Preval, Simon, Ubachs, Wim, Dzuba, Vladimir, Flambaum, Victor, Dumont, Vincent, Berengut, Julian 30 March 2017 (has links)
Hot white dwarf stars are the ideal probe for a relationship between the fine-structure constant and strong gravitational fields, providing us with an opportunity for a direct observational test. We study a sample of hot white dwarf stars, combining far-UV spectroscopic observations, atomic physics, atmospheric modelling, and fundamental physics in the search for variation in the fine structure constant. This variation manifests as shifts in the observed wavelengths of absorption lines, such as quadruply ionized iron (FeV) and quadruply ionized nickel (NiV), when compared to laboratory wavelengths. Berengut et al. (Phys. Rev. Lett. 2013, 111, 010801) demonstrated the validity of such an analysis using high-resolution Space Telescope Imaging Spectrograph (STIS) spectra of G191-B2B. We have made three important improvements by: (a) using three new independent sets of laboratory wavelengths; (b) analysing a sample of objects; and (c) improving the methodology by incorporating robust techniques from previous studies towards quasars (the Many Multiplet method). A successful detection would be the first direct measurement of a gravitational field effect on a bare constant of nature. Here we describe our approach and present preliminary results from nine objects using both FeV and NiV.
29

The Detection and Description of Symbiotic Accretion From Cool Evolved Stars

Lucy, Adrian B. January 2021 (has links)
Symbiotic stars are binaries consisting of a cool evolved G-M/S/C I-III star accreting onto a smaller companion---but the accretion disk itself is rarely detected. Accretion signatures like hard X-rays and optical/ultraviolet flickering are usually suppressed or outshone by shell burning on the accreting white dwarf, the luminous giant, and the giant's wind nebula. In Chapters 2 and 3, we present a new way to find symbiotics that is less biased against accreting-only, non-burning symbiotics with directly detectable accretion disks. Our search methodology is based on finding outliers in SkyMapper Southern Sky Survey broad-band and intermediate-band photometry, using a parameter space built from reconstructed u-g u-v snapshot colors and rapid variability between the three exposures of a 20-minute SkyMapper Main Survey filter sequence, from a sample of luminous red objects selected with 2MASS and Gaia. In a pilot survey employing this new search design, we discovered 12 new symbiotics, including four symbiotics with optical accretion disk flickering and at least two with boundary-layer hard X-rays, as well as 10 new symbiotic candidates. We also discovered optical flickering in the known symbiotic V1044 Cen (CD-36 8436). We conclude that at least 20% of the true population of symbiotics exhibits detectable optical flickering from the inner accretion disk, a substantial fraction of which would not meet the usual H-alpha equivalent width detection thresholds typically used to find symbiotics with traditional narrow-band emission line photometry surveys. There is a significant population of optically-flickering symbiotics hidden both within and beyond the known catalogs of symbiotic stars---however, the question of whether the true population of accreting-only symbiotics is larger than the population of burning symbiotics remains unanswered. We also find that our methods probe a completely different region of parameter space than recent work by the Munari et al. (2021) search for accreting-only symbiotics, while being surprisingly in harmony with the Akras et al. (2019) infrared selection criteria. As an intermediate step in our pilot survey, we explored several outlying regions in our SkyMapper parameter space with optical spectroscopy of 234 luminous red objects, which we present in a 248-page spectral atlas. Our results identify a zone of the u-g u-v snapshot color-color diagram in which virtually all objects are symbiotics. When all-sky uvg colors become available through future DRs of SkyMapper and MEPHISTO, between about 51 and 117 symbiotics missed by previous surveys (of which 11 to 17 have been reported in this work) will be discoverable using only this mostly-symbiotic zone of the color-color diagram, with a near-zero contamination rate. Main Survey filter-sequence variability is also a powerful tool for finding hidden, flickering symbiotics both inside and outside of the mostly-symbiotic color-color zone, but variability must still be used in conjunction with color; there must be enough of an accretion disk contribution to the u-band for it to exhibit detectable variability. We show that yellow post-AGB stars with strong Balmer jump absorption (along with the symbiotic Southern Crab) are outliers with large positive u-v, while some S and carbon stars are outliers with large negative u-v. We also show that it is important to correct the results of SkyMapper's catalog pipeline for variability when dealing with samples containing large-amplitude pulsating stars. In Chapters 4 and 5, we present an in-depth study of one of the few optically-flickering symbiotic stars previously known, MWC 560 (V694 Mon). The persistent outflow from MWC 560 is known to manifest as broad absorption lines (BALs), most prominently at the Balmer transitions. In Chapter 4, we report the detection of high-ionization BALs from C IV, Si IV, N V, and He II in International Ultraviolet Explorer spectra obtained on 1990 April 29-30, when an optical outburst temporarily erased the obscuring "iron curtain" of absorption troughs from Fe II and similar ions. The C IV and Si IV BALs reached maximum radial velocities at least 1000 km/s higher than contemporaneous Mg II and He II BALs; the same behaviors occur in the winds of quasars and cataclysmic variables. An iron curtain lifts to unveil high-ionization BALs during the P Cygni phase observed in some novae, suggesting by analogy a temporary switch in MWC 560 from persistent outflow to discrete mass ejection. At least three more symbiotic stars exhibit broad absorption with blue edges faster than 1500 km/s; high-ionization BALs have been reported in AS 304 (V4018 Sgr), while transient Balmer BALs have been reported in Z And and CH Cyg. These BAL-producing fast outflows can have wider opening angles than has been previously supposed. BAL symbiotics are short-timescale laboratories for their giga-scale analogs, broad absorption line quasars (BALQSOs), which display a similarly wide range of ionization states in their winds. In Chapter 5, we investigate how the accretion disc of MWC 560 is affected by its outflow. We performed optical, radio, X-ray, and ultraviolet observations of MWC 560 during its 2016 optical high state. We tracked multi-wavelength changes that signalled an abrupt increase in outflow power at the initiation of a months-long outflow fast state, just as the optical flux peaked: (1) an abrupt doubling of Balmer absorption velocities; (2) the onset of a 20 𝜇Jy/month increase in radio flux; and (3) an order-of-magnitude increase in soft X-ray flux. Juxtaposing to prior X-ray observations and their coeval optical spectra, we infer that both high-velocity and low-velocity optical outflow components must be simultaneously present to yield a large soft X-ray flux, which may originate in shocks where these fast and slow absorbers collide. Our optical and ultraviolet spectra indicate that the broad absorption-line gas was fast, stable, and dense (⪞10⁶.⁵ cm⁻³) throughout the 2016 outflow fast state, steadily feeding a lower-density (⪝10⁵.⁵ cm⁻³) region of radio-emitting gas. Persistent optical and ultraviolet flickering indicate that the accretion disc remained intact. The stability of these properties in 2016 contrasts to their instability during MWC 560's 1990 outburst, even though the disc reached a similar accretion rate. We propose that the self-regulatory effect of a steady fast outflow from the disc in 2016 prevented a catastrophic ejection of the inner disc. This behaviour in a symbiotic binary resembles disc/outflow relationships governing accretion state changes in X-ray binaries.
30

Candidate isolated neutron stars and other stellar x-ray sources from the ROSAT all-sky and Sloan Digital Sky Surveys /

Agüeros, Marcel A. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (p. 139-145).

Page generated in 0.0718 seconds