• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 18
  • 5
  • 3
  • 2
  • 2
  • Tagged with
  • 70
  • 70
  • 48
  • 31
  • 31
  • 27
  • 26
  • 26
  • 25
  • 25
  • 24
  • 24
  • 23
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

When White Dwarf Collide

January 2012 (has links)
abstract: 3D models of white dwarf collisions are used to assess the likelihood of double-degenerate mergers as progenitors for Type Ia supernovae (henceforth SNIa) and to identify observational signatures of double-degenerate collisions. Observations of individual SNIa, SNIa rates in different galaxy types, and double white dwarf binary systems suggest that mergers or collisions between two white dwarfs play a role in the overall SNIa population. Given the possibility of two progenitor systems (single-degenerate and double-degenerate), the sample of SNIa used in cosmological calcula- tions needs to be carefully examined. To improve calculations of cosmological parameters, the development of calibrated diagnostics for double-degenerate progenitor SNIa is essential. Head-on white dwarf collision simulations are used to provide an upper limit on the Ni-56 production in white dwarf collisions. In chapter II, I explore zero impact parameter collisions of white dwarfs using the Eulerian grid code FLASH. The initial 1D white dwarf profiles are created assuming hydrostatic equilibrium and a uniform composition of 50% C-12 and 50% O-16. The masses range from 0.64 to 0.81 solar masses and have an isothermal temperature of 10^7 K. I map these 1D models onto a 3D grid, where the dimensions of the grid are each eight times the white dwarf radius, and the dwarfs are initially placed four white dwarf radii apart (center to center). To provide insight into a larger range of physical possibilities, I also model non-zero impact parameter white dwarf collisions (Chapter III). Although head-on white dwarf collisions provide an upper limit on Ni-56 production, non-zero impact parameter collisions provide insight into a wider range of physical scenarios. The initial conditions (box size, initial separation, composition, and initial temperature) are identical to those used for the head-on collisions (Chapter II) for the same range of masses. For each mass pair- ing, collision simulations are carried out at impact parameters b=1 and b=2 (grazing). Finally, I will address future work to be performed (Chapter IV). / Dissertation/Thesis / Ph.D. Astrophysics 2012
12

Effective temperatures of cataclysmic-variable white dwarfs as a probe of their evolution

Pala, A. F., Gänsicke, B. T., Townsley, D., Boyd, D., Cook, M. J., De Martino, D., Godon, P., Haislip, J. B., Henden, A. A., Hubeny, I., Ivarsen, K. M., Kafka, S., Knigge, C., LaCluyze, A. P., Long, K. S., Marsh, T. R., Monard, B., Moore, J. P., Myers, G., Nelson, P., Nogami, D., Oksanen, A., Pickard, R., Poyner, G., Reichart, D. E., Rodriguez Perez, D., Schreiber, M. R., Shears, J., Sion, E. M., Stubbings, R., Szkody, P., Zorotovic, M. 21 April 2017 (has links)
We present HST spectroscopy for 45 cataclysmic variables (CVs), observed with HST/COS and HST/STIS. For 36 CVs, the white dwarf is recognisable through its broad Ly a absorption profile and we measure the white dwarf effective temperatures (T-eff) by fitting the HST data assuming log g = 8.35, which corresponds to the average mass for CV white dwarfs (similar or equal to 0.8M(circle dot)). Our results nearly double the number of CV white dwarfs with an accurate temperature measurement. We find that CVs above the period gap have, on average, higher temperatures (< T-eff > similar or equal to 23 000 K) and exhibit much more scatter compared to those below the gap (< T-eff >similar or equal to 15 000 K). While this behaviour broadly agrees with theoretical predictions, some discrepancies are present: ( i) all our new measurements above the gap are characterized by lower temperatures (T-eff similar or equal to 16 000-26 000 K) than predicted by the present-day CV population models (T-eff similar or equal to 38 000-43 000 K); (ii) our results below the gap are not clustered in the predicted narrow track and exhibit in particular a relatively large spread near the period minimum, which may point to some shortcomings in the CV evolutionary models. Finally, in the standard model of CV evolution, reaching the minimum period, CVs are expected to evolve back towards longer periods with mean accretion rates. M less than or similar to 2 x 10(-11)M(circle dot)yr(-1), corresponding to T-eff less than or similar to 11 500 K. We do not unambiguously identify any such system in our survey, suggesting that this major component of the predicted CV population still remains elusive to observations.
13

TOWARD A NETWORK OF FAINT DA WHITE DWARFS AS HIGH-PRECISION SPECTROPHOTOMETRIC STANDARDS

Narayan, G., Axelrod, T., Holberg, J. B., Matheson, T., Saha, A., Olszewski, E., Claver, J., Stubbs, C. W., Bohlin, R. C., Deustua, S., Rest, A. 05 May 2016 (has links)
We present the initial results from a program aimed at establishing a network of hot DA white dwarfs to serve as spectrophotometric standards for present and future wide-field surveys. These stars span the equatorial zone and are faint enough to be conveniently observed throughout the year with large-aperture telescopes. The spectra of these white dwarfs are analyzed in order to generate a non-local-thermodynamic-equilibrium model atmosphere normalized to Hubble Space Telescope colors, including adjustments for wavelength-dependent interstellar extinction. Once established, this standard star network will serve ground-based observatories in both hemispheres as well as space-based instrumentation from the UV to the near IR. We demonstrate the effectiveness of this concept and show how two different approaches to the problem using somewhat different assumptions produce equivalent results. We discuss the lessons learned and the resulting corrective actions applied to our program.
14

Progress in globular cluster research : insights from NGC 6397 and Messier 4

Davis, Saul 05 1900 (has links)
Globular clusters are extreme stellar populations. They have the highest stellar density, and host both the oldest and most metal-poor stellar populations in the Galaxy. Their densities make them excellent testbeds for stellar dynamics, while the properties of their stars allows us to test our understanding of old and metal-poor stellar evolution. This thesis is comprised of three projects studying the two nearest globular clusters, NGC 6397 and Messier 4. By examining high-quality HST photometry of NGC 6397, we have constrained the binary fraction in both the central regions, and beyond the half-light radius. We find a binary fraction of ~0.05 in the core and ~0.015 in the outskirts. In the context of recent N-body simulations by Hurley et al., we interpret the observed binary fraction in the outer field as the primordial binary fraction. This value is lower than typically assumed, and has implications for cluster dynamics and N-body modeling. We report the discovery that young white dwarfs are dynamically hotter than their progenitors. Using the same photometry as mentioned above, and archival HST photometry of Messier 4, we have found that young white dwarfs have an extended radial distribution, and therefore a higher velocity dispersion, compared with older white dwarfs and their progenitors. This implies the existence of a ``natal kick''. Implications for cluster dynamics and stellar evolution are discussed. Finally, we present the spectra of 23 white dwarfs in Messier 4 obtained with the Keck/LRIS and Gemini/GMOS spectrographs. We find that all white dwarfs are of type DA. Assuming the same DA/DB ratio as is observed in the field, the chance of finding no DBs in our sample due to statistical fluctuations is 0.006. This suggests DB formation is suppressed in the cluster environment. Furthermore, we constrain the mass of these white dwarfs by fitting models to the spectral lines. Our best estimate of the masses of the white dwarfs currently forming in Messier 4 is 0.51+/-0.02 M_sun.This extends the empirical constraint on the initial-final mass relation over the entire range of initial masses that could have formed white dwarfs in a Hubble time.
15

Progress in globular cluster research : insights from NGC 6397 and Messier 4

Davis, Saul 05 1900 (has links)
Globular clusters are extreme stellar populations. They have the highest stellar density, and host both the oldest and most metal-poor stellar populations in the Galaxy. Their densities make them excellent testbeds for stellar dynamics, while the properties of their stars allows us to test our understanding of old and metal-poor stellar evolution. This thesis is comprised of three projects studying the two nearest globular clusters, NGC 6397 and Messier 4. By examining high-quality HST photometry of NGC 6397, we have constrained the binary fraction in both the central regions, and beyond the half-light radius. We find a binary fraction of ~0.05 in the core and ~0.015 in the outskirts. In the context of recent N-body simulations by Hurley et al., we interpret the observed binary fraction in the outer field as the primordial binary fraction. This value is lower than typically assumed, and has implications for cluster dynamics and N-body modeling. We report the discovery that young white dwarfs are dynamically hotter than their progenitors. Using the same photometry as mentioned above, and archival HST photometry of Messier 4, we have found that young white dwarfs have an extended radial distribution, and therefore a higher velocity dispersion, compared with older white dwarfs and their progenitors. This implies the existence of a ``natal kick''. Implications for cluster dynamics and stellar evolution are discussed. Finally, we present the spectra of 23 white dwarfs in Messier 4 obtained with the Keck/LRIS and Gemini/GMOS spectrographs. We find that all white dwarfs are of type DA. Assuming the same DA/DB ratio as is observed in the field, the chance of finding no DBs in our sample due to statistical fluctuations is 0.006. This suggests DB formation is suppressed in the cluster environment. Furthermore, we constrain the mass of these white dwarfs by fitting models to the spectral lines. Our best estimate of the masses of the white dwarfs currently forming in Messier 4 is 0.51+/-0.02 M_sun.This extends the empirical constraint on the initial-final mass relation over the entire range of initial masses that could have formed white dwarfs in a Hubble time.
16

The effects of close binaries on the magnetic activity of M dwarfs as probed using close white dwarf companions

Morgan, Dylan Parker 13 March 2017 (has links)
I present a study of close white dwarf (WD) and M dwarf (dM) binary systems (WD+dM) to examine the effects that close companions have on the magnetic field generation in dMs. Using the Sloan Digital Sky Survey (SDSS) Data Release 8 spectroscopic database, I construct a sample of 1756 WD+dM high-quality pairs. I show that high-mass dMs (≤M4) in close binary systems are more likely to be magnetically active (as measured by Hα emission) and are able to remain active longer than field dMs. At lower masses (≥M5), where dMs become fully convective, the activity fraction and activity lifetimes of WD+dM binary systems become more comparable to those of the field dMs. The implications of having a close binary companion may include, increased stellar rotation through disk disruption, tidal effects, and/or angular momentum exchange. Thus, the similarity in activity between late-type field dMs and late-type dMs with close companions is likely due to the mechanism generating magnetic fields being less sensitive to the effects caused by a close companion; namely, increased stellar rotation. Using a subset of 181 close WD+dM pairs, matched to the time-domain SDSS Stripe 82 catalog, I show that enhanced magnetic activity extends to the flaring behavior of dMs in close binaries. Specifically, early spectral type dMs (M0-M1), in close WD+dM pairs, are two orders of magnitude more likely to flare than field dMs, whereas mid-type dMs (M2-M3) and late-type dMs (M4-M6) flare as frequently or less than the mid- to late-type field dM sample. To test whether the presence of a close companion leads to star-star interactions, I search for correlations between the WD occultations and flares from the dM member in KOI-256, an eclipsing WD+dM system from Kepler I find no correlations between the flaring activity of the dM and the WD occultations, indicating the there are no obvious signs of star-star interactions at work. In addition, the dM member of KOI-256 flares more than any other dM observed by Kepler and shows evidence for solar-like magnetic activity cycles, a feature not seen in many dMs to date.
17

Progress in globular cluster research : insights from NGC 6397 and Messier 4

Davis, Saul 05 1900 (has links)
Globular clusters are extreme stellar populations. They have the highest stellar density, and host both the oldest and most metal-poor stellar populations in the Galaxy. Their densities make them excellent testbeds for stellar dynamics, while the properties of their stars allows us to test our understanding of old and metal-poor stellar evolution. This thesis is comprised of three projects studying the two nearest globular clusters, NGC 6397 and Messier 4. By examining high-quality HST photometry of NGC 6397, we have constrained the binary fraction in both the central regions, and beyond the half-light radius. We find a binary fraction of ~0.05 in the core and ~0.015 in the outskirts. In the context of recent N-body simulations by Hurley et al., we interpret the observed binary fraction in the outer field as the primordial binary fraction. This value is lower than typically assumed, and has implications for cluster dynamics and N-body modeling. We report the discovery that young white dwarfs are dynamically hotter than their progenitors. Using the same photometry as mentioned above, and archival HST photometry of Messier 4, we have found that young white dwarfs have an extended radial distribution, and therefore a higher velocity dispersion, compared with older white dwarfs and their progenitors. This implies the existence of a ``natal kick''. Implications for cluster dynamics and stellar evolution are discussed. Finally, we present the spectra of 23 white dwarfs in Messier 4 obtained with the Keck/LRIS and Gemini/GMOS spectrographs. We find that all white dwarfs are of type DA. Assuming the same DA/DB ratio as is observed in the field, the chance of finding no DBs in our sample due to statistical fluctuations is 0.006. This suggests DB formation is suppressed in the cluster environment. Furthermore, we constrain the mass of these white dwarfs by fitting models to the spectral lines. Our best estimate of the masses of the white dwarfs currently forming in Messier 4 is 0.51+/-0.02 M_sun.This extends the empirical constraint on the initial-final mass relation over the entire range of initial masses that could have formed white dwarfs in a Hubble time. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
18

Establishing Super- and Sub-Chandrasekar Limiting Mass White Dwarfs to Explain Peculiar Type La Supernovae

Das, Upasana January 2015 (has links) (PDF)
A white dwarf is most likely the end stage of a low mass star like our Sun, which results when the parent star consumes all the hydrogen in its core, thus bringing fusion to a halt. It is a dense and compact object, where the inward gravitational pull is balanced by the outward pressure arising due to the motion of its constituent degenerate electrons. The theory of non-magnetized and non-rotating white dwarfs was formulated extensively by S. Chandrasekhar in the 1930s, who also proposed a maximum possible mass for this objects, known as the Chandrasekhar limit (Chandrasekhar 1935)1. White dwarfs are believed to be the progenitors of extremely bright explosions called type Ia supernovae (SNeIa). SNeIa are extremely important and popular astronomical events, which are hypothesized to be triggered in white dwarfs having mass close to the famous Chandrasekhar limit ∼ 1.44M⊙. The characteristic nature of the variation of luminosity with time of SNeIa is believed to be powered by the decay of 56Ni to 56Co and, finally, to 56Fe. This feature, along with the consistent mass of the exploding white dwarf, is deeply linked with their utilization as “standard candles” for cosmic distance measurement. In fact, SNeIa measurements were instrumental in establishing the accelerated nature of the current expansion of the universe (Perlmutter et al. 1999). However, several recently observed peculiar SNeIa do not conform to this traditional explanation. Some of these SNeIa are highly over-luminous, e.g. SN 2003fg, SN 2006gz, SN 2007if, SN 2009dc (Howell et al. 2006; Scalzo et al. 2010), and some others are highly under-luminous, e.g. SN 1991bg, SN 1997cn, SN 1998de, SN 1999by, SN 2005bl (Filippenko et al. 1992; Taubenberger et al. 2008). The luminosity of the former group of SNeIa implies a huge Ni-mass (often itself super-Chandrasekhar), invoking highly super-Chandrasekhar white dwarfs, having mass 2.1 − 2.8M⊙, as their most plausible progenitors (Howell et al. 2006; Scalzo et al. 2010). On the other hand, the latter group produces as low as ∼ 0.1M⊙ of Ni (Stritzinger et al. 2006), which rather seem to favor sub-Chandrasekhar explosion scenarios. In this thesis, as the title suggests, we have endeavored to establish the existence of exotic, super- and sub-Chandrasekhar limiting mass white dwarfs, in order to explain the aforementioned peculiar SNeIa. This is an extremely important puzzle to solve in order to comprehensively understand the phenomena of SNeIa, which in turn is essential for the correct interpretation of the evolutionary history of the universe. Effects of magnetic field: White dwarfs have been observed to be magnetized, having surface fields as high as 105 − 109 G (Vanlandingham et al. 2005). The interior field of a white dwarf cannot be probed directly but it is quite likely that it is several orders of magnitude higher than the surface field. The theory of weakly magnetized white dwarfs has been investigated by a few authors, however, their properties do not starkly contrast with that of the non-magnetized cases (Ostriker & Hartwick 1968). In our venture to find a fundamental basis behind the formation of super-Chandrasekhar white dwarfs, we have explored in this thesis the impact of stronger magnetic fields on the properties of white dwarfs, which has so far been overlooked. We have progressed from a simplistic to a more rigorous, self-consistent model, by adding complexities step by step, as follows: • spherically symmetric Newtonian model with constant (central) magnetic field • spherically symmetric general relativistic model with varying magnetic field • model with self-consistent departure from spherical symmetry by general relativis-tic magnetohydrodynamic (GRMHD) numerical modeling. We have started by exploiting the quantum mechanical effect of Landau quanti-zation due to a maximum allowed equipartition central field greater than a critical value Bc = 4.414 × 1013 G. To begin with, we have carried out the calculations in a Newtonian framework assuming spherically symmetric white dwarfs. The primary ef-fect of Landau quantization is to stiffen the equation of state (EoS) of the underlying electron degenerate matter in the high density regime, and, hence, yield significantly super-Chandrasekhar white dwarfs having mass much & 2M⊙ (Das & Mukhopadhyay 2012a,b). Consequently, we have proposed a new mass limit for magnetized white dwarfs which may establish the aforementioned peculiar, over-luminous SNeIa as new standard candles (Das & Mukhopadhyay 2013a,b). We have furthermore predicted possible evo-lutionary scenarios by which super-Chandrasekhar white dwarfs could form by accretion on to a commonly observed magnetized white dwarf, by invoking the phenomenon of flux freezing, subsequently ending in over-luminous, super-Chandrasekhar SNeIa (Das et al. 2013). Before moving on to a more complex model, we have justified the assumptions in our simplistic model, in the light of various related physics issues (Das & Mukhopad-hyay 2014b), and have also clarified, and, hence, removed some serious misconceptions regarding our work (Das & Mukhopadhyay 2015c). Next, we have considered a more self-consistent general relativistic framework. We have obtained stable solutions of magnetostatic equilibrium models for white dwarfs pertaining to various magnetic field profiles, however, still in spherical symmetry. We have showed that in this framework, a maximum stable mass as high as ∼ 3.3M⊙ can be realized (Das & Mukhopadhyay 2014a). However, it is likely that the anisotropic effect due to a strong magnetic field may cause a deformation in the spherical structure of the white dwarfs. Hence, in order to most self-consistently take into account this departure from spherical symmetry, we have constructed equilibrium models of strongly magnetized, static, white dwarfs in a general relativistic framework, first time in the literature to the best of our knowledge. In order to achieve this, we have modified the GRMHD code XNS (Pili et al. 2014), to apply it in the context of white dwarfs. Interestingly, we have found that signifi-cantly super-Chandrasekhar white dwarfs, in the range ∼ 1.7 − 3.4M⊙, are obtained for many possible field configurations, namely, poloidal, toroidal and mixed (Das & Mukhopadhyay 2015a). Furthermore, due to the inclusion of deformation caused by a strong magnetic field, super-Chandrasekhar white dwarfs are obtained for relatively lower central magnetic field strengths (∼ 1014 G) compared to that in the simplistic model — as correctly speculated in our first work of this series (Das & Mukhopadhyay 2012a). We have also found that although the characteristic deformation induced by a purely toroidal field is prolate, the overall shape remains quasi-spherical — justifying our earlier spherically symmetric assumption while constructing at least some models of strongly magnetized white dwarfs (Das & Mukhopadhyay 2014a). Indeed more accurate and extensive numerical analysis seems to have validated our analytical findings. Thus, very interestingly, our investigation has established that magnetized white dwarfs can indeed have mass that significantly exceeds the Chandrasekhar limit, irre-spective of the origin of the underlying magnetic effect — a discovery which is not only of theoretical importance, but also has a direct astrophysical implication in explaining the progenitors of the peculiar, over-luminous, super-Chandrasekhar SNeIa. Effects of modified Einstein’s gravity: A large array of models has been required to explain the peculiar, over- and under- luminous SNeIa. However, it is unlikely that nature would seek mutually antagonistic scenarios to exhibit sub-classes of apparently the same phenomena, i.e., triggering of thermonuclear explosions in white dwarfs. Hence, driven by the aim to establish a unification theory of SNeIa, we have invoked in the last part of this thesis a modification to Einstein’s theory of general relativity in white dwarfs. The validity of general relativity has been tested mainly in the weak field regime, for example, through laboratory experiments and solar system tests. However, the question remains, whether general relativity requires modification in the strong gravity regime, such as, the expanding universe, the region close to a black hole and neutron star. For instance, there is evidence from observational cosmology that the universe has undergone two epochs of cosmic acceleration, the theory behind which is not yet well understood. The period of acceleration in the early universe is known as inflation, while the current accelerated expansion is often explained by invoking a mysterious dark energy. An alternative approach to explain the mysteries of inflation and dark energy is to modify the underlying gravitational theory itself, as it conveniently avoids involving any exotic form of matter. Several modified gravity theories have been proposed which are extensions of Einstein’s theory of general relativity. A popular class of such theories is known as f (R) gravity (e.g. see de Felice & Tsujikawa 2010), where the Lagrangian density f of the gravitational field is an arbitrary function of the Ricci scalar R. In the context of astrophysical compact objects, so far, modified gravity theories have been applied only to neutron stars, which are much more compact than white dwarfs, in order to test the validity of such theories in the strong field regime (e.g. Cooney et al. 2010; Arapoˇglu et al. 2011). Moreover, a general relativistic correction itself does not seem to modify the properties of a white dwarf appreciably when compared to Newtonian calculations. Our venture of exploring modified gravity in white dwarfs in this thesis, is a first in the literature to the best of our knowledge. We have exploited the advantage that white dwarfs have over neutron stars, i.e., their EoS is well established. Hence, any change in the properties of white dwarfs can be solely attributed to the modification of the underlying gravity, unlike in neutron stars, where similar effects could be produced by invoking a different EoS. We have explored a popular, yet simple, model of f (R) gravity, known as the Starobinsky model (Starobinsky 1980) or R−squared model, which was originally pro-posed to explain inflation. Based on this model, we have first shown that modified gravity reproduces those results which are already explained in the paradigm of general relativity (and Newtonian framework), namely, low density white dwarfs in this context. This is a very important test of the modified gravity model and is furthermore necessary to constrain the underlying model parameter. Next, depending on the magnitude and sign of a single model parameter, we have not only obtained both highly super-Chandrasekhar and highly sub-Chandrasekhar limiting mass white dwarfs, but we have also established them as progenitors of the peculiar, over- and under-luminous SNeIa, respectively (Das & Mukhopadhyay 2015b). Thus, an effectively single underlying the-ory unifies the two apparently disjoint sub-classes of SNeIa, which have so far hugely puzzled astronomers. To summarize, in the first part of the thesis, we have established the enormous significance of magnetic fields in white dwarfs in revealing the existence of significantly super-Chandrasekhar white dwarfs. These super-Chandrasekhar white dwarfs could be ideal progenitors of the peculiar, over-luminous SNeIa, which can, hence, be used as new standard candles of cosmic distance measurements. In the latter part of the thesis, we have established the importance of a modified theory of Einstein’s gravity in revealing both highly super- and highly sub-Chandrasekhar limiting mass white dwarfs. We have furthermore demonstrated how such a theory can serve as a missing link between the peculiar, super- and sub-Chandrasekhar SNeIa. Thus, the significance of the current thesis lies in the fact that it not only questions the uniqueness of the Chandrasekhar mass-limit for white dwarfs, but it also argues for the need of a modified theory of Einstein’s gravity to explain astrophysical observations.
19

The Sirius System and Its Astrophysical Puzzles: Hubble Space Telescope and Ground-based Astrometry

Bond, Howard E., Schaefer, Gail H., Gilliland, Ronald L., Holberg, Jay B., Mason, Brian D., Lindenblad, Irving W., Seitz-McLeese, Miranda, Arnett, W. David, Demarque, Pierre, Spada, Federico, Young, Patrick A., Barstow, Martin A., Burleigh, Matthew R., Gudehus, Donald 08 May 2017 (has links)
Sirius, the seventh-nearest stellar system, is a visual binary containing the metallic-line A1. V star Sirius. A, the brightest star in the sky, orbited in a 50.13. year period by Sirius B, the brightest and nearest white dwarf (WD). Using images obtained over nearly two decades with the Hubble Space Telescope (HST), along with photographic observations covering almost 20 years and nearly 2300 historical measurements dating back to the 19th century, we determine precise orbital elements for the visual binary. Combined with the parallax and the motion of the A component, these elements yield dynamical masses of 2.063 +/- 0.023 M circle dot and 1.018 +/- 0.011 M circle dot for Sirius. A and B, respectively. Our precise HST astrometry rules out third bodies orbiting either star in the system, down to masses of similar to 15-25 M-Jup. The location of Sirius. B in the Hertzsprung-Russell diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass, and implies a cooling age of similar to 126 Myr. The position of Sirius. B on the mass-radius plane is also consistent with WD theory, assuming a carbon-oxygen core. Including the pre-WD evolutionary timescale of the assumed progenitor, the total age of Sirius B is about 228 +/- 10 Myr. We calculated evolutionary tracks for stars with the dynamical mass of Sirius A, using two independent codes. We find it necessary to assume a slightly subsolar metallicity, of about 0.85 Z circle dot, to fit its location on the luminosity-radius plane. The age of Sirius. A based on these models is about 237-247. Myr, with uncertainties of +/- 15 Myr, consistent with that of the WD companion. We discuss astrophysical puzzles presented by the Sirius system, including the probability that the two stars must have interacted in the past, even though there is no direct evidence for this and the orbital eccentricity remains high.
20

THE YOUNG AND BRIGHT TYPE IA SUPERNOVA ASASSN-14lp: DISCOVERY, EARLY-TIME OBSERVATIONS, FIRST-LIGHT TIME, DISTANCE TO NGC 4666, AND PROGENITOR CONSTRAINTS

Shappee, B. J., Piro, A. L., Holoien, T. W.-S., Prieto, J. L., Contreras, C., Itagaki, K., Burns, C. R., Kochanek, C. S., Stanek, K. Z., Alper, E., Basu, U., Beacom, J. F., Bersier, D., Brimacombe, J., Conseil, E., Danilet, A. B., Dong, Subo, Falco, E., Grupe, D., Hsiao, E. Y., Kiyota, S., Morrell, N., Nicolas, J., Phillips, M. M., Pojmanski, G., Simonian, G., Stritzinger, M., Szczygieł, D. M., Taddia, F., Thompson, T. A., Thorstensen, J., Wagner, M. R., Woźniak, P. R. 27 July 2016 (has links)
On 2014 December 9.61, the All-sky Automated Survey for SuperNovae (ASAS-SN or "Assassin") discovered ASASSN-141p just similar to 2 days after first light using a global array of 14 cm diameter telescopes. ASASSN-141p went on to become a bright supernova (V = 11.94 mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-141p for more than 100 days. We find that ASASSN-141p had a broad light curve (Delta m(15) (B) = 0.80 +/- 0.05), a B-band maximum at 2457015.82 +/- 0.03, a rise time of 16.941(-0.10)(+0.11) days, and moderate host-galaxy extinction (E (B - V)host = 0.33 +/- 0.06). Using ASASSN-141p, we derive a distance modulus for NGC 4666 of mu = 30.8 +/- 0.2, corresponding to a distance of 14.7 +/- 1.5 Mpc. However, adding ASASSN-141p to the calibrating sample of Type Ia supernovae still requires an independent distance to the host galaxy. Finally, using our early-time photometric and spectroscopic observations, we rule out red giant secondaries and, assuming a favorable viewing angle and explosion time, any nondegenerate companion larger than 0.34 RG(circle dot).

Page generated in 0.0376 seconds