• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 180
  • 39
  • 30
  • 19
  • 12
  • 12
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • Tagged with
  • 384
  • 384
  • 123
  • 88
  • 84
  • 42
  • 37
  • 35
  • 34
  • 33
  • 33
  • 32
  • 31
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Dynamics of tethering cables for a flying electric generator

Murthy, Raghuram Ananda, University of Western Sydney, School of Mechatronic, Computer and Electrical Engineering January 2000 (has links)
The dynamics of a tether cable for a flying wind generator, employed to generate electricity by utilising the high velocity jet-stream winds in the troposphere, is analysed. A non-linear mathematical model for the study of the dynamics of the cable is described by a partial differential equation, which is solved analytically without damping. For unsteady and damped states, ordinary differential equations are obtained by adopting a discrete analysis approach, which are solved numerically with the aid of MATLAB software. Solutions are found for a range of lumped masses to represent the cable and each solution is verified against a previous case. Likewise, the result for the three masses is checked against the cable using a single lumped mass. The analysis is extended to seven discrete masses. This research highlights the dynamic behaviour of the cable subjected to wind gusts on the rotors and it also represents an appreciable input to the flying wind generator concept. The dynamic behaviour of the cable is critical for a flying electric generator. / Master of Engineering (Hons)
172

Evaluation of Self-Starting Vertical Axis Wind Turbines for Stand-Alone Applications

Kirke, Brian Kinloch, n/a January 1998 (has links)
There is an urgent need for economical, clean, sustainable energy supplies, not only in densely populated areas where electricity grids are appropriate, but also in rural areas where stand-alone power supply systems are often more suitable. Although electrical power supply is very versatile and convenient, it introduces unnecessary complexity for some off-grid applications where direct mechanical shaft power can conveniently be provided by a wind turbine. Wind energy is one of the more promising renewable energy sources. Most wind turbines are of the horizontal axis type, but vertical axis wind turbines or VAWTs have some advantages for direct mechanical drive applications. They need no tail or yaw mechanism to orient them into the wind and power is easily transmitted via a vertical shaft to a load at ground level. Blades may be of uniform section and untwisted, making them relatively easy to fabricate or extrude, unlike the blades of horizontal axis wind turbines (HAWTs) which should be twisted and tapered for optimum performance. Savonius rotor VAWTs are simple and may have a place where the power requirement is only a few Watts, but they are inefficient and uneconomical for applications with larger power requirements. VAWTs based on the Darrieus rotor principle are potentially more efficient and more economical, but those with fixed pitch blades have hitherto been regarded as unsuitable for stand-alone use due to their lack of starting torque and low speed torque. This starting torque problem can be overcome by using variable pitch blades, but most existing variable pitch VAWTs, variously known as giromills or cycloturbines, need wind direction sensors, microprocessors and servomotors to control the blade pitch, making them impracticable for stand-alone, non-electrical applications. A simpler but less well known concept is passive or self-acting variable pitch in which the blades are free to pitch under the combined action of aerodynamic and inertial forces in such a way that a favourable blade angle of attack is maintained without the complexity of conventional variable pitch systems. Several fonns of self-acting variable pitch VAWTs or SAPVAWTs have been described in the literature, several patents exist for variants on the concept, and at least two companies world-wide have attempted to commercialise their designs. However the aerodynamic behaviour of these devices has been little understood and most designs appear to have been based on nothing more than a qualitative appreciation of the potential advantages of the concept. This thesis assesses the potential of both fixed and passive variable pitch vertical axis wind turbines to provide economical stand-alone power for direct mechanical drive applications. It is shown that the starting torque and low speed torque problems of VAWTs can be overcome either by passive variable pitch or by a combination of suitable blade aerofoil sections, either rigid or flexible, and transmissions which unload the rotor at low speeds so that high starting torque is not necessary. The work done for this thesis is made up of a sequence of stages, each following logically from the previous one: 1. Several tasks have been identified which could be performed effectively by a self-starting vertical axis wind turbine using direct mechanical drive. These include, a. pumping water, b. purifying and/or desalinating water by reverse osmosis, c. heating and cooling using vapour compression heat pumps, d. mixing and aerating water bodies and e. heating water by fluid turbulence. Thus it is apparent that such a system has the potential to make a useful contribution to society. 2. A literature survey of existing VAWT designs has been carried out to assess whether any are suitable for these applications. 3. As no suitable existing design was identified, an improved form of SAPVAWT has been developed and patented. 4. To optimise the performance of the improved SAPVAWT, a mathematical model has been developed in collaboration with Mr Leo Lazauskas of the University of Adelaide (see Kirke and Lazauskas, 1991, Lazauskas and Kirke, 1992). As far as the author of the present thesis is aware, this is the only existing mathematical model able to predict the performance of this particular type of SAPVAWT, and one of only two worldwide which model SAPVAWTs. 5. In order to use the mathematical model to predict the performance of a given SAPVAWT, it is necessary to have lift, drag and moment data for the aerofoil profile to be used, over a wide range of incidence and Reynolds numbers. A literature search has revealed large gaps in the existing data. 6. Wind tunnel testing has been carried out to assess the effect of camber on the performance of one set of NACA sections at low Reynolds number, and performance figures for other sections have been estimated by interpolation from existing data. 7. Using the assembled aerofoil data, both experimental and estimated, the mathematical model has been used to predict the performance of both fixed and variable pitch VAWTs. It has been found to predict correctly the performance of known fixed pitch VAWTs and has then been used to predict the performance of fixed pitch VAWTs with cambered blades using newly developed profiles that exhibit superior characteristics at low Reynolds numbers. Results indicate that fixed pitch VAWTs using these blade sections should self-start reliably. 8. To validate the mathematical model predictions for self-acting variable pitch, a two metre diameter physical model has been built and tested in a wind tunnel, and acceptable agreement has been obtained between predicted and measured performance. 9. To demonstrate the performance of a SAP VA WT under field conditions, a six metre diameter turbine has been designed, fabricated, erected and tested. 10. Because a prime mover such as a wind turbine is of no use unless it drives a toad, particular attention has been paid to the behaviour of complete systems, including the wind turbine, the transmission and the load. It is concluded that VAWTs with the improved self-starting and low speed torque characteristics described in this thesis have considerable potential in stand-alone, direct mechanical drive applications.
173

Gone with the Wind : The economic impact of disruptions A study of service and maintenance in the Swedish wind power market

Duncker, Nadja, Klötzer, Anneke, Larsson, Kristofer January 2010 (has links)
The purpose of this thesis is to explore disruptions Swedish wind turbines onshore are exposed to, and to estimate their economic impacts on the operators. We want to investigate whether there is a need for a more developed service and maintenance market within the Swedish wind power market. This study focuses on wind power, a renewable energy source in an emerging market, which experiences exponential growth. Sweden is a minor actor in the wind power market with a production of around 2 TWh yearly. The government aims at a total production of 10TWh in 2015 and 20TWh in 2020, which equals an annual growth of 24%. However, we hypothesize that the Swedish wind power market is negatively affected by a service and maintenance market which is underdeveloped due to a lack of competition. This results in lengthy repair times and disproportionate costs for wind power operators. The study was carried out by conducting semi-structured qualitative interviews and by sending out a survey to approximately 300 wind power operators. Six interviewees were wind power operators and one interviewee was a representative from an independent service supplier. We have also analysed the current cost situation of operators with theories about maintenance costs and we have also carried out an industry analysis on the service and maintenance market, which was based on Porter’s structural industry analysis. After conducting a structural analysis of the service and maintenance market, we can conclude a lack of competition today as there is a dominance of the wind turbine manufacturers as the service supplier. Furthermore we can see that this lack of competition has negative effects on the efficiency of the service and maintenance provided. The results also stress a need for a more developed service and maintenance market. We have found that the profitability for the Swedish wind power operators is challenged if the service and maintenance market is not keeping pace and meeting the demands of the rapidly growing Swedish wind power market as a whole.
174

Association Between Industrial Wind Turbine Noise and Sleep Quality in a Comparison Sample of Rural Ontarians

Lane, James January 2013 (has links)
Background: Wind turbines (WTs) are an emerging source of renewable energy in Ontario. One concern is that aerodynamic and mechanical noise produced by the WTs results in sleep disturbance in residents living near such facilities. However, evidence to date is primarily self-reported, with no objective measures of the impact on sleep quality currently in the literature. Objective: The objective of this study was to determine if the presence of a grid connected WT is a risk factor for poor sleep quality and if wind turbine noise is associated with sleep parameters. The hypothesis was that individuals residing within fifteen hundred meters of a WT experience poorer sleep, compared to those who do not reside near a WT. Methods: A daily sleep diary and actigraphy-derived measures of sleep quality were obtained from twelve participants from a WT community in rural Ontario and ten participants from a comparison community with no wind power installations. Sound level meters were used to assess the equivalent (LAeq) and maximum (LAmax) sound pressure levels within the bedroom. A variety of statistical analysis were performed to determine co-variation between variables, noise thresholds for sleep disturbance, and risk for poor sleep quality. Results: A total of 110 person-nights and 12,971 sleep epochs were observed. Participants in the exposed group lived at a mean distance of 795 m from the closest WT (range 474 m–1085 m). Although numerous actigraphy-derived sleep parameters were poorer in the exposed group, including lower average sleep efficiency (89% vs. 92%), longer sleep onset latency (6 min vs. 4 min), and longer wake after sleep onset (42 min vs. 29 min), the differences were not statistically significant. When the data was dichotomized by quality of sleep, the prevalence of poor sleep in the exposed group was greater than in the unexposed group (22 vs. 11 per 100 person-nights), although the results of logistic regression modeling indicated that the differences were not statistically significant (after adjustment for age and sex). Findings from the analysis of sleep epochs showed an association between awakenings and LAmax (during the sleep epoch) only for noise events above 55 dBA. No significant differences in sleep parameters derived from the sleep diaries were found between the groups. Conclusion: Both actigraphy and sleep diaries can provide valuable information to understand the impact of industrial WTs on the quality of sleep for residents living in the vicinity. This pilot study had a small sample size which reduced the likelihood of identifying differences in sleep quality between the exposed and unexposed groups. Additionally, measurements were obtained during periods of relatively low wind speeds (nightly power outputs ranged from 1 to 34 MW or 0.5 to 17% capacity) thus, limiting the generalizability of the findings. Findings of poorer mean values of numerous sleep parameters in the exposed group support the need for more extensive research in the area. Low response to noise events up to 45 dBA was an interesting finding that also merits further investigation. Assessment of WT noise is complex and noise exposure measurement requires unique methods than those used for other sources of community noise.
175

Analysis of alternative energy options for buildings

Rezaie, Behnaz 01 August 2009 (has links)
The importance of utilizing different types of energy and their technical application is discussed. Awareness around the globe about the world energy crisis and its critical environmental condition has put more emphasis on the use of renewable energies in every corner of life. It is a well‐known fact that global warming, inefficient use of energy and greenhouse gases are damaging the environment, species and human life drastically. These issues will be discussed in recently conducted research. To address the crucial state of our environment, two simultaneous scenarios are considered. Initially, energy conservation and the switch to a low carbon/no carbon fuel are studied. As for energy conservation in buildings, smart methods in the use of energy in buildings are discussed. Based on different research reported, humans must change their attitude toward the use of resources, and in particular, be conscientious about energy consumption. Next, renewable energy promises a suitable alternative to energy needs in this century, and the best means to overcome the environmental issue and energy crisis is discussed. The practical methods of calculation for solar technology equipment, ground source heat pumps, and wind turbines are explained. In the application part of the study, four buildings are chosen as case studies; two of them from residential sectors, one is a commercial/institutional building, and the fourth is an industrial building. A ground source heat pump for heating and cooling, a solar water heater for heating space or hot water, and a photovoltaic panel for generating electricity are designed for the case studies. Even projects under hybrid systems combined from two technologies are designed. 36 different energy options are calculated for the four case studies. Results show that if a target is reducing CO2 emissions, what systems are the best. In contrast, when decision making is based on budget, what system is the first choice? Not only are technology, environmental protection and cost the main parameters for deciding on renewable technologies, but so are reliability, installation, maintenance and ease of use. Hence, renewable energy systems are categorized based on a broad vision.
176

The Development of a Research Technique for Low Speed Aeroacoustics

McPhee, Adam D. January 2008 (has links)
The aerodynamic sound generated by wind turbines was identified as a growing concern within the industry. Prior to performing wind turbine aeroacoustic research, however, a technique suitable for studying low speed airfoils needed to be designed, serving as the primary research objective. A review of aeroacoustic theory and literature indicated that low speed flows are best studied using experimental methods, leading to the design of a near field pressure measurement technique. To facilitate the near field pressure measurements, a custom piezoelectric sensor was developed, exhibiting a pressure and frequency range of approximately 67 to 140[dB], and 100 to 10000[Hz], respectively. As a secondary research objective, a series of experiments were performed to validate the designed technique. The experiments were performed in a non-anechoic wind tunnel using a cylindrical test specimen. Using the near field pressure measurements, as well as a simple far field measurement, the sources of aerodynamic sound were effectively resolved. The Strouhal numbers corresponding to the contributing flow structures were generally within 1.5[%] of correlation based predictions. The near field pressures were consistently 10 to 15[dB] higher than the far field, quantifying the benefit of the near field technique. The method was also effective in detecting the decreasing coherence of the aeroacoustic sources with increasing Reynolds number. A minor deficiency was observed in which the ability to localize aeroacoustic sources was impeded, however, the cylinder experiments were particularly vulnerable to such a deficiency. Although the near field pressure measurements were shown to be effective in characterizing the aeroacoustic sources, a number of recommendations are presented to further improve the flexibility and measurement uncertainty of the experimental technique.
177

The Development of a Research Technique for Low Speed Aeroacoustics

McPhee, Adam D. January 2008 (has links)
The aerodynamic sound generated by wind turbines was identified as a growing concern within the industry. Prior to performing wind turbine aeroacoustic research, however, a technique suitable for studying low speed airfoils needed to be designed, serving as the primary research objective. A review of aeroacoustic theory and literature indicated that low speed flows are best studied using experimental methods, leading to the design of a near field pressure measurement technique. To facilitate the near field pressure measurements, a custom piezoelectric sensor was developed, exhibiting a pressure and frequency range of approximately 67 to 140[dB], and 100 to 10000[Hz], respectively. As a secondary research objective, a series of experiments were performed to validate the designed technique. The experiments were performed in a non-anechoic wind tunnel using a cylindrical test specimen. Using the near field pressure measurements, as well as a simple far field measurement, the sources of aerodynamic sound were effectively resolved. The Strouhal numbers corresponding to the contributing flow structures were generally within 1.5[%] of correlation based predictions. The near field pressures were consistently 10 to 15[dB] higher than the far field, quantifying the benefit of the near field technique. The method was also effective in detecting the decreasing coherence of the aeroacoustic sources with increasing Reynolds number. A minor deficiency was observed in which the ability to localize aeroacoustic sources was impeded, however, the cylinder experiments were particularly vulnerable to such a deficiency. Although the near field pressure measurements were shown to be effective in characterizing the aeroacoustic sources, a number of recommendations are presented to further improve the flexibility and measurement uncertainty of the experimental technique.
178

Site Specific Optimization of Rotor/Generator Sizing of Wind Turbines

Martin, Kirk Alan 25 August 2006 (has links)
The optimum configuration of rotor-to-generator size for wind turbines is dependent upon the wind resource and is the configuration that produces the most electrical energy at a fixed capital cost. This optimization study held the combined cost of the rotor plus generator constant, but varied the respective sizes of the rotor and generator within this constraint. Total annual electrical energy was computed for each configuration at a series of wind resources each defined by a different Weibull probability distribution. In each case the configuration that produced the most electrical energy was determined to be the optimum. The fixed capital cost was also varied to see the effect on the optimum at each wind resource. It was found that the optimal rotor-to-generator size decreased as the average wind speed at a resource increased, and increased as Weibull shape parameter k increased. The optimal rotor-to-generator size decreased at a constant wind resource as the fixed capital cost increased. In each case there was a corresponding optimal capacity factor which never exceeded 0.5. Capacity factors above this optimum resulted in less electrical energy being produced for the same capital cost. The final product of the study is a series of graphs showing the optimum rotor size for a given generator size at a series of wind resources.
179

The Economic Optimization of Wind Turbine Design

Schmidt, Michael Frank 15 November 2007 (has links)
This thesis studies the optimization of a variable speed, three blade, horizontal-axis wind turbine. The design parameters considered are the rotor diameter, hub height and generator capacity. The levelized cost of energy and simple payback are the figures of merit being minimized. Blade element momentum theory is used to calculate the power produced by the wind turbine rotor. Increasing the rotor diameter increases the power delivered to the generator at all wind speeds up to the limit of generator capacity. Increasing the generator capacity raises the limit on maximum power output. Increasing the hub height of a wind turbine increases power output due to the higher wind speeds at increased heights. However, all of these design changes involve an increase in capital cost. Furthermore, wind characteristics vary between wind resources. Therefore, the optimal wind turbine design will change depending on the wind resource. The model developed in this thesis is used to minimize the levelized cost of energy for various wind resources. The results of this study provide a guideline for the optimum wind turbine design in various wind resources. The model is also used to compare the difference between minimizing the levelized cost of energy and minimizing simple payback of a wind turbine located off the coast of Georgia. Simple payback is calculated by considering not only the total annual electricity produced and capital cost of the turbine but also the revenue the turbine will generate. Revenue is calculated from a time-dependent valuation of electrical power. The results of this study show that minimizing levelized cost of energy and minimizing simple payback result in the same optimum design for this particular site. The results show, however, that using a time-dependent valuation of electricity results in a different simple payback than when an average value of electricity is used.
180

Aerodynamic Design And Optimization Of Horizontal Axis Wind Turbines By Using Bem Theory And Genetic Algorithm

Ceyhan, Ozlem 01 September 2008 (has links) (PDF)
An aerodynamic design and optimization tool for wind turbines is developed by using both Blade Element Momentum (BEM) Theory and Genetic Algorithm. Turbine blades are optimized for the maximum power production for a given wind speed, a rotational speed, a number of blades and a blade radius. The optimization variables are taken as a fixed number of sectional airfoil profiles, chord lengths, and twist angles along the blade span. The airfoil profiles and their aerodynamic data are taken from an airfoil database for which experimental lift and drag coefficient data are available. The BEM analysis tool developed is first validated with the experimental data for low wind speeds. A 100 kW wind turbine, which is used in the validation, is then optimized. As a result of the optimization, the power production is improved by 40 to 80 percent. The optimization methodology is then employed to design a 1MW wind turbine with a 25m radius.

Page generated in 0.0531 seconds