• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 235
  • 200
  • 24
  • 18
  • 14
  • 13
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 623
  • 623
  • 195
  • 164
  • 157
  • 109
  • 90
  • 90
  • 64
  • 64
  • 58
  • 55
  • 52
  • 52
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Predictive engineering in wind energy: a data-mining approach

Li, Wenyan 01 December 2009 (has links)
The large-scale wind energy industry is relatively new and is rapidly expanding. The ability of a wind turbine to extract power from the wind is a function of three main factors: the measured wind speed, the power curve of the turbine, and the ability of the machine to handle wind fluctuations. The key parameter determining wind turbine performance is wind speed and it is normally measured with an anemometer placed at the nacelle of a turbine. The dynamic nature of wind speed, however, is a barrier for applying predictive engineering in wind energy. Traditional approaches based on physical science and mathematical modelings have limitations on wind power prediction models. Conventional approach based on dynamic modeling has disadvantage of power generation process modeling due to time-shift nature of the process. Data mining is a promising approach for modeling wind energy, e.g., power prediction and optimization, wind speed forecasting, power curve monitoring and fault diagnosis. It involves a number of steps including data pre-processing, data sampling, feature selection, dimension reduction and, etc. This thesis focus on applying data mining to predictive engineering in wind industry, and ultimately builds wind speed prediction and wind farm power prediction models, develops turbine dynamic control and power optimization strategy, explores methodology for system level fault diagnosis. However the philosophy, methods and frameworks discussed in this research can also be applied to other industrial processes. This thesis proposes a series of predictive models under the framework of data mining. Chapter 2 introduces a methodology for short term wind speed prediction based on wind farm layout information. Chapter 3 and Chapter 4 present prediction models for wind turbine parameters. Chapter 5 proposes strategies for dynamic control of wind turbines. Chapter 6 explores the fault diagnosis and prediction using SCADA data.
172

Performance optimization of wind turbines

Zhang, Zijun 01 May 2012 (has links)
Improving performance of wind turbines through effective control strategies to reduce the power generation cost is highly desired by the wind industry. The majority of the literature on performance of wind turbines has focused on models derived from principles versed in physics. Physics-based models are usually complex and not accurate due to the fact that wind turbines involve mechanical, electrical, and software components. These components interact with each other and are subjected to variable loads introduced by the wind as well as the rotating elements of the wind turbine. Recent advances in data acquisition systems allow collection of large volumes of wind energy data. Although the prime purpose of data collection is monitoring conditions of wind turbines, the collected data offers a golden opportunity to address most challenging issues of wind turbine systems. In this dissertation, data mining is applied to construct accurate models based on the turbine collected data. To solve the data-driven models, evolutionary computation algorithms are applied. As data-driven based models are non-parametric, the evolutionary computation approach makes an ideal solution tool. Optimizing wind turbines with different objectives is studied to accomplish different research goals. Two research directions of wind turbines performance are pursued, optimizing a wind turbine performance and optimizing a wind farm performance. The goal of single wind turbine optimization is to improve wind turbine efficiency and its life-cycle. The performance optimization of a wind farm is to minimize the total cost of operating a wind farm based on the computed turbine scheduling strategies. The methodology presented in the dissertation is applicable to processes besides wind industry.
173

Path-following control for power generating kites using economic model predictive control approach

Zhang, Zhang 03 June 2019 (has links)
Exploiting high altitude wind energy using power kites is an emerging topic in the field of renewable energy. The claimed advantages of power kites over traditional wind power technologies are the lower construction costs, less land occupation and more importantly, the possibility of efficiently harvesting wind energy at high altitudes, where more dense and steady wind power exists. One of the most challenging issues to bring the power kite concept to real industrialization is the controller design. While traditional wind turbines can be inherently stabilized, the airborne nature of kites causes a strong instability of the systems. This thesis aims to develop a novel economic model predictive path-following control (EMPFC) framework to tackle the path-following control of power kites, as well as provide insightful stability analysis of the proposed control scheme. Chapter 3 is focused on the stability analysis of EMPFC. We proceed with a sampled-data EMPC scheme for set-point stabilization problems. An extended definition of dissipativity is introduced for continuous-time systems, followed by giving sufficient stability conditions. Then, the EMPFC scheme for output path-following problems is proposed. Sufficient conditions that guarantee the convergence of the system to the optimal operation on the reference path are derived. Finally, an example of a 2-DoF robot is given. The simulation results show that under the proposed EMPFC scheme, the robot can follow along the reference path in forward direction with enhanced economic performance, and finally converges to its optimal steady state. In Chapter 4, the proposed EMPFC scheme is applied to a challenging nonlinear kite model. By introducing additional degrees of freedom in the zero-error manifold (i.e., the space where the output error is zero), a relaxation of the optimal operation is achieved. The effectiveness of the proposed control scheme is shown in two aspects. For a static reference path, the generated power is increased while the kite is stabilized in the neighborhood of the reference path. For a dynamic reference path, the economic performance can be further enhanced since parameters for the reference path are treated as additional optimization variables. The proposed EMPFC achieves the integration of path optimization and path-following, resulting in a better economic performance for the closed-loop system. Simulation results are given to show the effectiveness of the proposed control scheme. Finally, Chapter 5 concludes the thesis and future research topics are discussed. / Graduate / 2020-05-14
174

What are the uncertainties and potential impacts of "Brexit"/the EU referendum result on the UK wind energy sector?

Mummery, Robert January 2019 (has links)
This study examines the potential effects of Brexit on the wind power industry within the UK. It became apparent that in order to reach the objective that the approach of the research needed to be broadened as it was found that Brexit has potential effects in many areas of the UK's electricity industry, including the import and export of electricity and the associated fuels used in the generation of electricity. It was found that in the event of a hard Brexit, one with no deal, that the UK's physical connections by undersea cables with the EU may be disrupted. There is a raft of legislation within the Internal Energy Market (IEM) governing this issue that will need a complete rewrite should the UK be forced to leave the IEM. Consideration was given to the effect of Brexit on the three main traditional methods used to generate electricity in the UK, coal, gas and nuclear power and how wind powered energy could be used to fill any shortfall directly or indirectly caused by Brexit. The UK Government has pledged to eradicate the use of coal in generating electricity by 2025 so the study considered only the short term effect of this. For gas, the UK is a net importer, albeit mainly from outside the EU, so the implications of Brexit on gas fired generation of electricity were discussed and found to be negligible. For nuclear powered electricity generation the implications were found to be more serious. The UK would have to resign its membership of Euratom, the European Atomic Agency Community. The potential implications of this include, limited access to nuclear fuel, and reduced participation into nuclear research carried out by the EU. The scope of Euratom also includes a large variety of areas including the safeguarding of nuclear materials in storage and in transit along with radiation protection. Plans by two Japanese companies to build new nuclear power stations in the UK have been shelved with Brexit adding to the uncertainty of their viability. It was found that the combined implications of the above could result in a shortfall in the medium term provision of electricity within the UK. Finally it was discussed whether or not wind powered energy could fill this void and it was found that the UK Government could overcome the deficiency by encouraging investment in wind power by increasing the value of their Contract for Difference, CfD,  auctions.
175

Putting the spin on wind energy: risk management issues associated with wind energy project development in Australia

Finlay-Jones, Richard Unknown Date (has links)
The debate on global warming is over (Stix, 2006 p24). The global community must now find ways to reduce greenhouse emissions, particularly from energy generation. Wind energy provides one of the potential solutions to generate renewable energy without creating harmful greenhouse gases. Wind energy is the fastest growing energy generation industry globally (‘Operating wind power capacity' 2006a). This rapid growth is being driven by increasing global energy demand, commitment from governments globally to international agreements including the Kyoto Protocol (UNFCCC 1997) to reduce the emission of greenhouse gases, as well as individual country commitments to mandatory renewable energy targets. Australia, whilst being a signatory to the United Nations Framework Convention on Climate Change (UNFCCC) commitment to reduce greenhouse gas emissions, has so far failed to ratify the Kyoto Protocol. In Australia, wind energy development to date has been driven primarily by the development of the Mandatory Renewable Energy Target (MRET) under the Renewable Energy (Electricity) Act 2000. This requires a commitment to 2% of total electricity generation (9,500GW) to be derived from renewable energy sources by the year 2010 (Warwryk, undated). It is now understood, that the current federal obligation to renewable energy is now oversubscribed, and consequently the likelihood of further wind energy projects being developed is highly limited (Brazzale 2005). External to the government commitment to renewable energy, the development of wind energy projects requires a range of inputs including, but not limited to; an understanding of the wind resource, security of land, access to suitable electricity transmission grid, a market for the electricity, access to suitable technology and a level of community support. Whilst the literature related to project management and risk management is extensive, the literature related to the risks associated with wind energy development in Australia is limited. This research then seeks to fill a void that asks the question; How can project managers minimise the risk associated with wind energy developments in Australia? To investigate this research problem, comparative case study analysis was adopted as a methodology utilising a structured interview process of project managers responsible for the development of 8 Australian wind energy projects. This research shows that the greatest risk to Australian projects is the lack of security associated with the current federal legislation and the consequent loss of market value of the power from wind energy projects. A number of additional primary and secondary risks are identified by the interview participants, and the research is able to draw out three common themes of risk management strategies. These three themes were categorised as conservatism, due diligence and proactivism. This study contributes to the research associated with project management, risk management and wind energy development. This insight into the Australian wind energy industry provides policy makers, educators and stakeholders with information to assist in improving the political, economic and social environment for further wind energy development, in order to mitigate against further greenhouse gas emission and combat global warming.
176

Evaluation of Self-Starting Vertical Axis Wind Turbines for Stand-Alone Applications

Kirke, Brian Kinloch, n/a January 1998 (has links)
There is an urgent need for economical, clean, sustainable energy supplies, not only in densely populated areas where electricity grids are appropriate, but also in rural areas where stand-alone power supply systems are often more suitable. Although electrical power supply is very versatile and convenient, it introduces unnecessary complexity for some off-grid applications where direct mechanical shaft power can conveniently be provided by a wind turbine. Wind energy is one of the more promising renewable energy sources. Most wind turbines are of the horizontal axis type, but vertical axis wind turbines or VAWTs have some advantages for direct mechanical drive applications. They need no tail or yaw mechanism to orient them into the wind and power is easily transmitted via a vertical shaft to a load at ground level. Blades may be of uniform section and untwisted, making them relatively easy to fabricate or extrude, unlike the blades of horizontal axis wind turbines (HAWTs) which should be twisted and tapered for optimum performance. Savonius rotor VAWTs are simple and may have a place where the power requirement is only a few Watts, but they are inefficient and uneconomical for applications with larger power requirements. VAWTs based on the Darrieus rotor principle are potentially more efficient and more economical, but those with fixed pitch blades have hitherto been regarded as unsuitable for stand-alone use due to their lack of starting torque and low speed torque. This starting torque problem can be overcome by using variable pitch blades, but most existing variable pitch VAWTs, variously known as giromills or cycloturbines, need wind direction sensors, microprocessors and servomotors to control the blade pitch, making them impracticable for stand-alone, non-electrical applications. A simpler but less well known concept is passive or self-acting variable pitch in which the blades are free to pitch under the combined action of aerodynamic and inertial forces in such a way that a favourable blade angle of attack is maintained without the complexity of conventional variable pitch systems. Several fonns of self-acting variable pitch VAWTs or SAPVAWTs have been described in the literature, several patents exist for variants on the concept, and at least two companies world-wide have attempted to commercialise their designs. However the aerodynamic behaviour of these devices has been little understood and most designs appear to have been based on nothing more than a qualitative appreciation of the potential advantages of the concept. This thesis assesses the potential of both fixed and passive variable pitch vertical axis wind turbines to provide economical stand-alone power for direct mechanical drive applications. It is shown that the starting torque and low speed torque problems of VAWTs can be overcome either by passive variable pitch or by a combination of suitable blade aerofoil sections, either rigid or flexible, and transmissions which unload the rotor at low speeds so that high starting torque is not necessary. The work done for this thesis is made up of a sequence of stages, each following logically from the previous one: 1. Several tasks have been identified which could be performed effectively by a self-starting vertical axis wind turbine using direct mechanical drive. These include, a. pumping water, b. purifying and/or desalinating water by reverse osmosis, c. heating and cooling using vapour compression heat pumps, d. mixing and aerating water bodies and e. heating water by fluid turbulence. Thus it is apparent that such a system has the potential to make a useful contribution to society. 2. A literature survey of existing VAWT designs has been carried out to assess whether any are suitable for these applications. 3. As no suitable existing design was identified, an improved form of SAPVAWT has been developed and patented. 4. To optimise the performance of the improved SAPVAWT, a mathematical model has been developed in collaboration with Mr Leo Lazauskas of the University of Adelaide (see Kirke and Lazauskas, 1991, Lazauskas and Kirke, 1992). As far as the author of the present thesis is aware, this is the only existing mathematical model able to predict the performance of this particular type of SAPVAWT, and one of only two worldwide which model SAPVAWTs. 5. In order to use the mathematical model to predict the performance of a given SAPVAWT, it is necessary to have lift, drag and moment data for the aerofoil profile to be used, over a wide range of incidence and Reynolds numbers. A literature search has revealed large gaps in the existing data. 6. Wind tunnel testing has been carried out to assess the effect of camber on the performance of one set of NACA sections at low Reynolds number, and performance figures for other sections have been estimated by interpolation from existing data. 7. Using the assembled aerofoil data, both experimental and estimated, the mathematical model has been used to predict the performance of both fixed and variable pitch VAWTs. It has been found to predict correctly the performance of known fixed pitch VAWTs and has then been used to predict the performance of fixed pitch VAWTs with cambered blades using newly developed profiles that exhibit superior characteristics at low Reynolds numbers. Results indicate that fixed pitch VAWTs using these blade sections should self-start reliably. 8. To validate the mathematical model predictions for self-acting variable pitch, a two metre diameter physical model has been built and tested in a wind tunnel, and acceptable agreement has been obtained between predicted and measured performance. 9. To demonstrate the performance of a SAP VA WT under field conditions, a six metre diameter turbine has been designed, fabricated, erected and tested. 10. Because a prime mover such as a wind turbine is of no use unless it drives a toad, particular attention has been paid to the behaviour of complete systems, including the wind turbine, the transmission and the load. It is concluded that VAWTs with the improved self-starting and low speed torque characteristics described in this thesis have considerable potential in stand-alone, direct mechanical drive applications.
177

Market potential in Sweden of small wind power stations : MBA-thesis in marketing / Marknadspotential i Sverige för små vindkraftverk : MBA-uppsats i marknadsföring

Johansson, Bo-Göran January 2009 (has links)
<p><strong>AIM</strong>: As global warming is a fact and the consumption of energy is continuously increasing, alternative sourcing of energy is a must. The use of oil and coal for heating is limited due to it is nature resource which is also limited. Everyone will be forced to evaluate their own usage of energy and look into the alternatives of how to be a part of solving this global issue. For many, alternatives such as sun panels and wind power stations could be an alternative power source.</p><p> </p><p>Today, there is only a limited availability in Sweden of small sized wind power stations and only small local producers or importers that sell the equipment – mostly through internet based market communications.</p><p> </p><p><strong>Method</strong>: The theoretical approach to this thesis is based on the MIO model in combination with several other models and tools such as, PESTEL, Marketing Mix, SWOT, Porter’s five forces, EVC and STP.</p><p> </p><p><strong>Result & Conclusions</strong>: There is a market for small wind power stations between 5 – 50 kW in Sweden.</p><p>The biggest reason why the market segment exist and will increase is due to continuously increasing energy prices and that wind power stations of this size are permitted to be connected directly to household consumption.</p><p> </p><p><strong>Suggestions for future research</strong>: How are other energy complements like solar panels influenced? What governmental decisions affect the business of small wind power stations?</p><p> </p><p><strong>Contributions to the thesis</strong>: Success in this segment requires a different approach to product offering than what the current competition is doing.</p>
178

Vindkraft under utveckling

Engblom Wallberg, Ian January 2009 (has links)
<p>Vindkraft är ett miljövänligt energislag med stor utvecklingspotential, både i Sverige ochutomlands. I det här examensarbetet sammanfattas de viktigaste bitarna av kunskapen sombehövs för att förstå sig på vindkraft, med fokus på meteorologi och kommunikation medkonsultföretag i branschen. På grundval av litteratur i ämnet, konsultrapporter beställda av ettsvenskt företag i branschen och diskussion med experter ges här en grundläggande översikt imeteorologi för vindkraft, vilken innefattar kunskaper om klimatet i allmänhet ochvindklimatet i synnerhet, förståelse för luftens flöde, den geostrofiska vinden och hurtopografi och dylikt påverkar luftens strömning i gränsskiktet. Vidare diskuteras hur energin ivinden tas till vara, med en sammanfattning av viktiga tekniska detaljer; vindkraftsspecifikastorheter och uttryck, energiförluster och effekterna av att placera många vindkraftverk i engrupp; vakeffekten. En av de dominerande delarna av alla konsultrapporter som studerats ärhur man analyserar och behandlar vinddata för maximering av tillförlitlighet och relevans. Föratt en mätserie ska kunna användas för att förutsäga framtida vindar måste dennormalårskorrigeras, antingen med hjälp av andra mätserier, avancerade fysikaliska modellerav strömningen, eller både och. Osäkerheter uppkommer alltid, och en diskussion kring hur deolika konsultbolagen behandlar dem görs. Slutligen diskuteras olika sätt att förbättrakvaliteten på både beställning av rapport och slutprodukten från konsulten, utifrån ett antalfrågor ställda av ovan nämnda företag och författaren själv. Resultatet sammanfattas nedan.En mycket viktig del av utvecklingen står vindkraftprojekteringsföretag för. Företagen ibranschen behöver ha goda kunskaper i meteorologi för att bli framgångsrika. De måste ocksåkunna kommunicera sina kunskaper på ett klart och precist sätt. Företagen måste också kunnalära av andra i samma bransch och av andra med specialistkunskaper. För företag utan egnameteorologer anställda är det viktigt att kommunikationen och det ömsesidiga lärandet mellankonsult- och beställarbolag sker på ett professionellt, men samtidigt stöttande och lärande, sätt.Beställaren måste lära sig vad man ska beställa och vara tydlig med vad man kräver avkonsulten. Konsulten måste i sin tur vara tydlig med val av metod, tillvägagångssätt ochbegärande av rätt material som underlag för sina studier. En ny infallsvinkel som intediskuteras i rapporterna fast den kanske borde det är klimatförändringarnas påverkan på detlångsiktiga klimatet. Faktum är att trenden under 1900-talet inte visar någon större långsiktigförändring av medelvinden, men de årliga variationerna kan vara stora och tenderar att varierai cykler som skulle kunna utnyttjas för att maximera framgången för vindkraften.</p> / <p>Wind power is an environmentally friendly energy source with a considerable growthpotential, in Sweden as well as abroad. In this Bachelor’s thesis work, the most importantparts of the knowledge needed to understand wind power, is summarized. The focus is onmeteorology and communication with wind power consultants by a Swedish wind powercompany. With the basis of relevant literature, consultancy reports and discussion withsubject experts, is here provided a basic synopsis of wind power meteorology, which includesknowledge of the climate in general, and the wind climate specifically, understanding of thegeneral flow of the wind, the geostrophic wind in particular, and how topography and similarground features affect the boundary layer flow. Furthermore it is discussed how the windenergy content is harnessed, briefly going over some technical details, wind power specificquantities and expressions, energy losses and the effects of bundling wind power plants closetogether: wake effects. One of the dominant parts of all wind consultancy reports studied hereis how to analyze wind data series to maximize accuracy and relevance. A trustworthymeasuring series good enough to predict future wind energy content needs to be long termcorrected using other, longer measuring series as reference, or checked against an advancedphysically accurate mesoscale flow model, or both. Uncertainties are always a part of theequation, and a discussion over how the different wind power consultants treat theseuncertainties is made. Finally there is a discussion about different measures that can be madeto improve quality on both detailing orders for wind power consultancy reports and the finalproduct delivered to the client. The results are summarized in the next paragraph.Wind power developers are a major influence on how wind power research is shaped. A goodknowledge of meteorology is a key to success for wind power industry businesses.Communication with industry expert companies is also paramount. Clearly and precisely,companies need to learn from, and communicate with, other wind power enterprises, scientificexperts and researchers. Wind power companies without their own meteorologists have aneven bigger need of this professional contact with other businesses providing themeteorological expertise they need. Contacts need to be supportive and teaching. The clientneeds to learn what to order in detail and what they expect from the report. The providercompany needs to be detailed about their selection of methods and procedure. Consultantsshould be equally detailed in requisition of base data from the client. A point of view notpresent in the studied consult reports is climate change and how it affects the long term windclimate. As a matter of fact the Scandinavian 20th century average wind trend is neutral, butyear-to-year variations can be quite significant and tend to vary in cycles possible to exploitfor wind power success.</p>
179

Wind Climate Estimates - Validation of Modelled Wind Climate and Normal Year Correction

Högström, Martin January 2007 (has links)
<p>Long time average wind conditions at potential wind turbine sites are of great importance when deciding if an investment will be economically safe. Wind climate estimates such as these are traditionally done with in situ measurements for a number of months. During recent years, a wind climate database has been developed at the Department of Earth Sciences, Meteorology at Uppsala University. The database is based on model runs with the higher order closure mesoscale MIUU-model in combination with long term statistics of the geostrophic wind, and is now used as a complement to in situ measurements, hence speeding up the process of turbine siting. With this background, a study has been made investigating how well actual power productions during the years 2004-2006 from 21 Swedish wind turbines correlate with theoretically derived power productions for the corresponding sites.</p><p>When comparing theoretically derived power productions based on long term statistics with measurements from a shorter time period, correction is necessary to be able to make relevant comparisons. This normal year correction is a main focus, and a number of different wind energy indices which are used for this purpose are evaluated. Two publicly available (Swedish and Danish Wind Index) and one derived theoretically from physical relationships and NCEP/NCAR reanalysis data (Geostrophic Wind Index). Initial testing suggests in some cases very different results when correcting with the three indices and further investigation is necessary. An evaluation of the Geostrophic Wind Index is made with the use of in situ measurements.</p><p>When correcting measurement periods limited in time to a long term average, a larger statistical dispersion is expected with shorter measurement periods, decreasing with longer periods. In order to investigate this assumption, a wind speed measurement dataset of 7 years were corrected with the Geostrophic Wind Index, simulating a number of hypothetical measurement periods of various lengths. When normal year correcting a measurement period of specific length, the statistical dispersion decreases significantly during the first 10 months. A reduction to about half the initial statistical dispersion can be seen after just 5 months of measurements.</p><p>Results show that the theoretical normal year corrected power productions in general are around 15-20% lower than expected. A probable explanation for the larger part of this bias is serious problems with the reported time-not-in-operation for wind turbines in official power production statistics. This makes it impossible to compare actual power production with theoretically derived without more detailed information. The theoretically derived Geostrophic Wind Index correlates well to measurements, however a theoretically expected cubed relationship of wind speed seem to account for the total energy of the wind. Such an amount of energy can not be absorbed by the wind turbines when wind speed conditions are a lot higher than normal.</p> / <p>Vindklimatet vid tänkbara platser för uppförande av vindkraftverk är avgörande när det beslutas huruvida det är en lämplig placering eller ej. Bedömning av vindklimatet görs vanligtvis genom vindmätningar på plats under ett antal månader. Under de senaste åren har en vindkarteringsdatabas utvecklats vid Institutionen för Geovetenskaper, Meteorologi vid Uppsala universitet. Databasen baseras på modellkörningar av en högre ordningens mesoskale-modell, MIUU-modellen, i kombination med klimatologisk statistik för den geostrofiska vinden. Denna används numera som komplement till vindmätningar på plats, vilket snabbar upp bedömningen av lämpliga platser. Mot denna bakgrund har en studie genomförts som undersöker hur bra faktisk energiproduktion under åren 2004-2006 från 21 vindkraftverk stämmer överens med teoretiskt härledd förväntad energiproduktion för motsvarande platser. Om teoretiskt härledd energiproduktion baserad på långtidsstatistik ska jämföras med mätningar från en kortare tidsperiod måste korrektion ske för att kunna göra relevanta jämförelser. Denna normalårskorrektion genomförs med hjälp av olika vindenergiindex. En utvärdering av de som finns allmänt tillgängliga (Svenskt vindindex och Danskt vindindex) och ett som härletts teoretiskt från fysikaliska samband och NCEP/NCAR återanalysdata (Geostrofiskt vindindex) görs. Inledande tester antyder att man får varierande resultat med de tre indexen och en djupare utvärdering genomförs, framförallt av det Geostrofiska vindindexet där vindmätningar används för att söka verifiera dess giltighet.</p><p>När kortare tidsbegränsade mätperioder korrigeras till ett långtidsmedelvärde förväntas en större statistisk spridning vid kortare mätperioder, minskande med ökande mätlängd. För att undersöka detta antagande används 7 års vindmätningar som korrigeras med det Geostrofiska vindindexet. I detta simuleras ett antal hypotetiskt tänkta mätperioder av olika längd. När en mätperiod av specifik längd normalårskorrigeras minskar den statistiska spridningen kraftigt under de första 10 månaderna. En halvering av den inledande statistiska spridningen kan ses efter endast 5 månaders mätningar.</p><p>Resultaten visar att teoretiskt härledd normalårskorrigerad energiproduktion generellt är ungefär 15-20% lägre än väntat. En trolig förklaring till merparten av denna skillnad är allvarliga problem med rapporterad hindertid för vindkraftverk i den officiella statistiken. Något som gör det omöjligt att jämföra faktisk energiproduktion med teoretiskt härledd utan mer detaljerad information. Det teoretiskt härledda Geostrofiska vindindexet stämmer väl överens med vindmätningar. Ett teoretiskt förväntat förhållande där energi är proportionellt mot kuben av vindhastigheten visar sig rimligen ta hänsyn till den totala energin i vinden. En sådan energimängd kan inte tas till vara av vindkraftverk när vindhastighetsförhållandena är avsevärt högre än de normala.</p>
180

Methods for short-term prediction of wind speeds in the Pacific Northwest Columbia Gorge wind farm region

Davidson, James D. (James Douglas) 15 June 2012 (has links)
Variable electrical generation (VG) sources such as wind farms are an increasing percentage of total electrical generation in the Bonneville Power Administration (BPA) balancing area and are starting to impact the ability of the regional balancing authority to control the electric grid. Wind farms are not dispatchable and challenge historical electric grid control methods. Successful integration of VG at high penetration levels of wind needs to address increased overall system variability and the rapid power ramp rates caused by wind. One of the new control paradigms needed is accurate wind speed prediction which directly relates to wind farm power output. With an accurate wind speed forecast other generation sources can be dispatched as needed to ensure grid stability. This work uses BPA metrology station (MS) data to make predictions for short-term wind speed where short-term is defined as a one hour prediction horizon. It is shown that, using the available metrology station data and several different prediction methodologies, only small improvements in short-term wind speed prediction can be achieved with the available data for the algorithms analyzed. / Graduation date: 2013

Page generated in 0.0712 seconds