• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Failure mechanism of wire bonding in IC package process

Ho, Ming-zhe 06 July 2004 (has links)
Aluminum bond pads on semiconductor chips play an important role in IC device reliability and yield. In the paper, the vertical tension loading transferred from the capillary is clarified as the direct driving force for bond pad metal peeling. The crack on the bonding pad is identified as the root cause of the pad peeling. It is simulated by finite element method to find the effect of driving force resulting in the crack during the ultrasonic wire bonding process. It indicated that the horizontal vibration of the capillary controlled by ultrasonic power of the bonding machine was the main factors led to the crack on the bonding pad as well as its propagation into the oxide layers in chip. The degradation of Au wire/Al bond pad has become a major bonding failure problem. It is because that the molding resin with low thermal stability (e.g. bi-phenyl epoxy resin) and the IC devices under high thermal environments were used in packaging process. For the lifetime to bond failure, the bi-phenyl epoxy molding becomes shorter than that for cresol novolac epoxy due to the corrosion reaction of Au-Al intermetallics with bromine (Br) contained in the resin compounds. It was clarified that the reactive intermetallic was Au4Al phase formed in the bond interface. In addition, by utilizing the SEM, AES, EDS and XPS techniques, it could be carried out to reveal and identify defects underneath Al layer, and the contaminated Al bond pads could cause poor intermetallic growths led to the failed or unreliable connections from the chip to the outside world.
2

Embedded Magnetics For Power System On Chip (psoc)

Lu, Jian 01 January 2009 (has links)
A novel concept of on-chip bondwire inductors and transformers with ferrite epoxy glob coating is proposed, offering a cost effective approach to realize power systems on chip (PSoC) or System-in-Package (PSiP). The concept has been investigated both experimentally and with finite element modeling. Improvement in total inductance is demonstrated for multi-turn bondwire inductors over single bondwire inductors. The inductance and Q factor can be further boosted with coupled multi-turn inductor concept. Transformer parameters including self- and mutual inductance, and coupling factors are extracted from both modeled and measured S-parameters. More importantly, the bondwire magnetic components can be easily integrated into SoC manufacturing processes with minimal changes to the layout, and open enormous possibilities for realizing cost-effective, high current, high efficiency PSoC's or PSiP's. The design guidelines for single bondwire inductors as well as multi-turn inductors are discussed step by step in several chapters. Not only is the innovated concept for bondwire inductor with ferrite ink presented, but also the practical implementation and design rules are given. With all the well defined steps, people who want to use these bondwire inductors with ferrite ink in their PSoC research or products will find it as simple as using commercial inductors. Last but not least, the PSoC concept using a bondwire inductor is demonstrated by building the prototype of dc-dc buck converter IC as well as the whole package. IC and the whole function block are tested and presented in this work.
3

Fabrication Refinements of Advanced Packaging Techniques for Medium-Voltage Wirebond-less Multi-Chip Power Modules

Lester, Danielle Kathryn 20 June 2023 (has links)
Three growing power electronics applications have massive requirements for properly operating their medium-voltage and high-voltage systems: electric transportation, renewable energy, and the power grid. Their needs include dense power systems with higher efficiency and higher voltage and current devices. This requires devices with higher switching frequencies to lower the size of the passives in the converter and devices that can withstand higher operating temperatures as components move closer together to improve power densities. Devices that achieve higher switching speeds and lower specific on-state resistances also reduce losses. Wide bandgap devices (WBG) like silicon carbide (SiC) have a higher bandgap, higher electric field strength, higher thermal conductivity, and lower carrier concentration than silicon (Si). This allows for higher temperature operation, faster switching, higher voltage blocking, and lower power losses, directly meeting the requirements of the previously noted applications. However, the current packaging schemes are limiting the ability of SiC to operate in these applications by applying packaging schemes used for Si. Therefore, it is critical to use and refine advanced packaging techniques so that WBG devices can better operate and meet the growing demands of these power electronic applications. Low-inductance, wirebond-less, high-density, scalable modules are possible due to advanced packaging methods. While beneficial to the operation and design, these techniques introduce new challenges to the fabrication process. This requires refinement to improve the yield of sandwich-structure modules with wirebond-less interconnects. For this module, encapsulated, silver-sintered substrates reduce the peak electric field within the package, improving the partial discharge inception voltage to meet insulation requirements. It is essential to have a uniform bondline between the substrates to achieve all bond connections and improve reliability. Silver sintering is also used to attach the molybdenum (Mo) post interconnects. These interconnects allow for sandwich-structure modules with low inductances; however, they have tolerance variation from manufacturing and bondline thicknesses, which become problematic for multi-chip power modules with an increased number of die and posts. The variation results in tilt, causing some posts to disconnect altogether. Additionally, soldering MCPMs involves a large thermal mass that the soldering reflow profile from a datasheet does not account for. Ultimately, these fabrication concerns can result in misalignment or disconnected post interconnects to the top substrate. Post interconnect planarity and alignment are vital for this multi-chip power module to avoid open or shorted connections that can derate switch positions. This thesis aims to refine each packaging step in assembling a wirebond-less, multi-chip power module. The bond uniformity of silver (Ag) sintering is addressed in dried preform and wet paste cases. The soldering methods are explored and improved by creating a modified reflow profile for large thermal masses and introducing pressure to reduce bondline variation and voiding content. The entire sandwich structure module is analyzed in a statistical tolerance analysis to understand which component introduces the most variation and height mismatch, providing insight as to which packaging techniques need further control to improve the yield of multi-chip power modules. / Master of Science / The electrification of many systems worldwide has increased the need for compact, efficient power electronics. Their applications span electric transportation, renewable energy systems, grid applications, and data centers, to name a few medium-voltage applications. Wide bandgap (WBG) semiconductors can outperform silicon in these applications, offering higher temperature robustness, higher efficiency performance, and higher voltage capabilities. The faster switching will reduce the size and weight of the converters containing these devices. However, using typical packaging schemes such as wirebonds will limit the potential of WBG devices in these applications. Advanced packaging techniques have been developed to increase the electric field strength, reduce the power loop inductances, reduce electromagnetic interference from fast-switching transients, and improve the power densities of multi-chip power modules for medium voltage and current applications. However, these packaging techniques are not trivial to implement and have resulted in a low yield of these modules. This thesis aims to refine each packaging step in assembling a wirebond-less, multi-chip power module. The bond uniformity of silver sintering is addressed in cases of dried preform and wet paste. The soldering methods are explored and improved by creating a modified reflow profile for large thermal masses and introducing pressure to reduce bondline variation and voiding content. The entire sandwich structure module is analyzed in a statistical tolerance analysis to understand which component introduces the most variation and height mismatch, providing insight as to which packaging techniques need further control to improve the yield of multi-chip power modules.
4

Design and Development of High Density High Temperature Power Module with Cooling System

Ning, Puqi 01 June 2010 (has links)
In recent years, the SiC power semiconductor has emerged as an attractive alternative that pushes the limitations of junction temperature, power rating, and switching frequency of Si devices. These advanced properties will lead converters to higher power density. However, the reliability of the SiC semiconductor is still under investigation, and at the same time, the standard Si device packages do not meet the requirement of high temperature operation. In order to take full advantage of SiC semiconductor devices, high density, high temperature device packaging needs to be developed. In this dissertation, a high temperature wirebond package for multi-chip phase-leg power module using SiC devices was designed, developed, fabricated and tested. The details of the material selection and thermo-mechanical reliability evaluation are described. High temperature power test shows that the presented package can perform well at the high junction temperature. In order to increase the power density, reduce the parasitic parameters, and enhance the electrical, thermo-mechanical performance over wirebond packages, planar package is utilized to better take advantages of SiC device. This dissertation proposed a novel package, in which the interconnections can be formed on small dimensional pads and enclosed pads that may baffle the regular solder based connection in other planar packages. Electrical and thermo-mechanical tests of the prototype module demonstrate the functionality and reliability of the presented planar packaging methodology. In this dissertation, together with the design example, the manual module layout design and automatic module layout design process are also presented. Furthermore, a systematic optimal design process and parametric study of the heatsink-fan cooling system by applying the analytical model is described. This dissertation also established a systematic testing procedure which can rapidly detect defects and reduce the risk in high temperature packaging testing. Finally, a wirebond module and a planar module are designed for 175 ºC junction temperature and 250 ºC junction temperatures. All the key concepts and ideas developed in this work are implemented in the prototype module development and then verified by the experimental results. / Ph. D.

Page generated in 0.0528 seconds