• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 3
  • 2
  • Tagged with
  • 23
  • 23
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Calving ground habitat selection of boreal woodland caribou (Rangifer tarandus caribou) in the Owl-Flintstone range

Dupont, Daniel L. J. 11 April 2014 (has links)
The Owl-Flintstone range in southeastern Manitoba is among the most at risk in the province. Through a series of transects and plots established throughout the study area, this study characterized calving habitat at a fine scale, examined the use of caribou calving areas by large mammals and examined if a calving habitat model correctly identified high quality calving habitat. Parturient females utilized black spruce dominated islands and peninsulas on lakes as well as islands and peninsulas in bogs. Bear utilized both predicted low and high quality sites. Black spruce and lichen cover were significantly greater within known calving sites compared to predicted low quality habitat. Forbs, herbs and downed woody debris values were significantly lower within known calving sites compared to predicted high quality sites. The calving habitat model correctly identified both high quality and low quality calving habitat in the Owl-Flintstone range, however parameters could be refined.
12

Genetic relations and phylogeography of woodland and barrenground caribou

Dueck, Gregory S., January 1998 (has links) (PDF)
Thesis (M.S.)--University of Alberta, 1998. / Includes bibliographical references (leaves 45-56).
13

Woodland caribou conservation in the Little Smoky: wolf management and the role of bears

Robichaud, Christine B 11 1900 (has links)
Woodland caribou population declines in west-central Alberta precipitated a wolfcontrol. This program to protect caribou could be compromised if (1) there are strong public pressures against helicopter gunning and strychnine poisoning of wolves and/or (2) other predators compensate to kill caribou. Because bears can be important ungulate predators, I used stable isotope techniques to reconstruct black and grizzly bear diets including contributions of caribou, caribou calves, ants, ungulates (moose, deer and elk), and 3 plant groups. Bears assimilated 2-58% terrestrial protein indicating large variation among individuals. As an alternative to current wolf-control practices, I reviewed spatial and temporal patterns of harvests (1985-2006) on registered traplines. Wolf trapping has increased during the past 2 decades, but on average trappers harvested only 10% of the provincial wolf population, well below culls required to control the population. Under the registered trapline system it is unlikely that trapping could control wolf abundance. / Ecology
14

Woodland caribou conservation in the Little Smoky: wolf management and the role of bears

Robichaud, Christine B Unknown Date
No description available.
15

Use of fecal DNA to estimate population demographics of the Boreal and Southern Mountain ecotypes of woodland caribou

Hettinga, Peter N. 09 September 2010 (has links)
This study looked at the efficacy of using woodland caribou fecal pellets as a source of DNA to identify sampled animals and estimate population demographics. Fecal pellet samples were collected using systematic surveys of woodland caribou ranges in Jasper National Park, Alberta and the North Interlake region, Manitoba. Collection of pellet samples took place when snow was present to allow for tracking and location of caribou cratering areas and to obtain good quality DNA. DNA was amplified at ten polymorphic loci and one sex-specific primer. To estimate population size (N ̂) and population growth rate (λ), mark-recapture models were used. Model assumptions were evaluated and tested by stratifying available samples based on herd and gender information. In using the Mh (jackknife) model, the population sizes for south Jasper National Park were estimated at 125 animals in 2006-2007 (95% CI: 114, 143), 91 animals in 2007-2008 (95% CI: 83, 105) and 134 animals in 2008-2009 (95% CI: 123, 152); comparable to the mark-resight population estimates calculated over the same sampling periods. Genetic diversity indices for the different herds in Jasper National Park presented a lower genetic diversity for the smaller Maligne and Brazeau herds when compared to the larger Tonquin and A La Peche herds. Use of population assignment tests on samples collected in Jasper National Park indicated considerable admixture between the different herds despite earlier telemetry work demonstrating strong herd fidelity. The North Interlake population was estimated at 134 animals (95% CI: 122,151) in 2006-2007 and 106 animals (95% CI: 97, 121) in 2007-2008. Using data collected between 2005 and 2008, population growth rate for North Interlake was estimated at 0.83 (90% confidence interval: 0.65, 1.02). As a λ below 1 indicates a declining population, continue monitoring of the North Interlake herd is highly recommended. This studied clearly showed that the sampling of fecal DNA is a reliable and noninvasive alternative to monitoring woodland caribou population sizes and trends in the boreal and mountain regions.
16

Use of fecal DNA to estimate population demographics of the Boreal and Southern Mountain ecotypes of woodland caribou

Hettinga, Peter N. 09 September 2010 (has links)
This study looked at the efficacy of using woodland caribou fecal pellets as a source of DNA to identify sampled animals and estimate population demographics. Fecal pellet samples were collected using systematic surveys of woodland caribou ranges in Jasper National Park, Alberta and the North Interlake region, Manitoba. Collection of pellet samples took place when snow was present to allow for tracking and location of caribou cratering areas and to obtain good quality DNA. DNA was amplified at ten polymorphic loci and one sex-specific primer. To estimate population size (N ̂) and population growth rate (λ), mark-recapture models were used. Model assumptions were evaluated and tested by stratifying available samples based on herd and gender information. In using the Mh (jackknife) model, the population sizes for south Jasper National Park were estimated at 125 animals in 2006-2007 (95% CI: 114, 143), 91 animals in 2007-2008 (95% CI: 83, 105) and 134 animals in 2008-2009 (95% CI: 123, 152); comparable to the mark-resight population estimates calculated over the same sampling periods. Genetic diversity indices for the different herds in Jasper National Park presented a lower genetic diversity for the smaller Maligne and Brazeau herds when compared to the larger Tonquin and A La Peche herds. Use of population assignment tests on samples collected in Jasper National Park indicated considerable admixture between the different herds despite earlier telemetry work demonstrating strong herd fidelity. The North Interlake population was estimated at 134 animals (95% CI: 122,151) in 2006-2007 and 106 animals (95% CI: 97, 121) in 2007-2008. Using data collected between 2005 and 2008, population growth rate for North Interlake was estimated at 0.83 (90% confidence interval: 0.65, 1.02). As a λ below 1 indicates a declining population, continue monitoring of the North Interlake herd is highly recommended. This studied clearly showed that the sampling of fecal DNA is a reliable and noninvasive alternative to monitoring woodland caribou population sizes and trends in the boreal and mountain regions.
17

On the Modifiable Areal Unit Problem and kernel home range analyses: the case of woodland caribou (Rangifer tarandus caribou)

Kilistoff, Kristen 10 September 2014 (has links)
There are a myriad of studies of animal habitat use that employ the notion of “home range”. Aggregated information on animal locations provide insight into a geographically discrete units that represents the use of space by an animal. Among various methods to delineate home range is the commonly used Kernel Density Estimation (KDE). The KDE method delineates home ranges based on an animal’s Utilization Distribution (UD). Specifically, a UD estimates a three-dimensional surface representing the probability or intensity of habitat use by an animal based on known locations. The choice of bandwidth (i.e., kernel radius) in KDE determines the level of smoothing and thus, ultimately circumscribes the size and shape of an animal’s home range. The bounds of interest in a home range can then be delineated using different volume contours of the UD (e.g., 95% or 50%). Habitat variables can then be assessed within the chosen UD contour(s) to ascertain selection for certain habitat characteristics. Home range analyses that utilize the KDE method, and indeed all methods of home range delineation, are subject to the Modifiable Areal Unit Problem (MAUP) whereby the changes in the scale at which data (e.g., habitat variables) are analysed can alter the outcome of statistical analyses and resulting ecological inferences. There are two components to MAUP, the scale and zoning effects. The scale effect refers to changes to the data and, consequently the outcome of analyses as a result of aggregating data to coarser spatial units of analysis. The aggregation of data can result in a loss of fine-scale detail as well as change the observed spatial patterns. The zone effect refers to how, when holding scale constant, the delineation of areal units in space can alter data values and ultimately the results of analyses. For example, habitat features captured within 1km2 gridded sampling units may change if instead 1km2 hexagon units are used. This thesis holds there are three “modifiable” factors in home range analyses that render it subject to the MAUP. The first two relate specifically to the use of the KDE method namely, the choice of bandwidth and UD contour. The third is the grain (e.g., resolution) by which habitat variables are aggregated, which applies to KDE but also more broadly to other quantitative methods of home range delineation In the following chapters we examine the changes in values of elevation and slope that result from changes to KDE bandwidth (Chapter 2) UD contour (Chapter 3) and DEM resolution (Chapter 4). In each chapter we also examine how the observed effects of altering each individual parameter of scale (e.g., bandwidth) changes when different scales of the other two parameters are considered (e.g., contour and resolution). We expected that the scale of each parameter examined would change the observed effect of other parameters. For example, that the homogenization of data at coarser resolutions would reduce the degree of difference in variable values between UD contours of each home range. To explore the potential effects of MAUP on home range analyses we used as model population 13 northern woodland caribou (Rangifer tarandus). We created seasonal home ranges (winter, calving, summer, rut and fall) for each caribou using three different KDE bandwidths. Within each home range we delineated four contours based on differing levels of an animal’s UD. We then calculated values of elevation and slope (mean, standard deviation and coefficient of variation) using a Digital Elevation Model (DEM) aggregated to four different resolutions within the contours of each seasonal home range. We found that each parameter of scale significantly changed the values of elevation and slope within the home ranges of the model caribou population. The magnitude as well as direction of change in slope and elevation often varied depending the specific contour or season. There was a greater decrease in the variability of elevation within the fall and winter seasons at smaller KDE bandwidths. The topographic variables were significantly different between all contours of caribou home ranges and the difference between contours were in general, significantly higher in fall and winter (elevation) or calving and summer (slope). The mean and SD of slope decreased at coarser resolutions in all caribou home ranges, whereas there was no change in elevation. We also found interactive effects of all three parameters of scale, although these were not always as direct as initially anticipated. Each parameter examined (bandwidth, contour and resolution) may potentially alter the outcome of northern woodland caribou habitat analyses. We conclude that home range analyses that utilize the KDE method may be subject to MAUP by virtue the ability to modify the spatial dimensions of the units of analysis. As such, in habitat analyses using the KDE careful consideration should be given to the choice of bandwidth, UD contour and habitat variable resolution. / Graduate / 0366 / 0329 / spicym@uvic.ca
18

Wolf responses to spatial variation in moose density in northern Ontario

Anderson, Morgan 02 May 2012 (has links)
Forty-four wolves in 3 boreal forest sites in Ontario were monitored via GPS radiotelemetry during 2010 and 2011 to examine spatial responses to variation in prey density. Home ranges were defined using a Brownian bridge utilization distribution, and a resource utilization function was calculated for each pack in winter and summer, based on habitat, topography, and prey density. Wolf territories were smaller where moose density was higher. Third order selection (within home range) varied by pack and season. Wolves generally selected for sloping areas, areas near water, and stands with deciduous or regenerating forest, but selected against areas with dense conifer cover. Roads were most important in summer, especially in those territories with large road networks. Habitat use in a mild winter was similar to habitat use in summer. Variable resource selection among packs emphasizes the adaptable, generalist nature of wolves even in the relatively homogenous the boreal shield. / National Science and Engineering Research Council, Ontario Graduate Scholarships, Ontario Ministry of Natural Resources - Wildlife Research and Development Section, Center for Northern Forest Ecosystem Research, Ontario Ministry of Natural Resources, Canadian Forest Service, Forest Ecosystem Science Cooperative
19

Analyzing the Economic Benefit of Woodland Caribou Conservation in Alberta

Harper, Dana L Unknown Date
No description available.
20

Woodland Caribou Conservation in Alberta: Range Delineation and Resource Selection

Slater, Simon C Unknown Date
No description available.

Page generated in 0.0754 seconds