Spelling suggestions: "subject:"word2vec"" "subject:"word2vect""
41 |
Evaluating Random Forest and a Long Short-Term Memory in Classifying a Given Sentence as a Question or Non-QuestionAnkaräng, Fredrik, Waldner, Fabian January 2019 (has links)
Natural language processing and text classification are topics of much discussion among researchers of machine learning. Contributions in the form of new methods and models are presented on a yearly basis. However, less focus is aimed at comparing models, especially comparing models that are less complex to state-of-the-art models. This paper compares a Random Forest with a Long-Short Term Memory neural network for the task of classifying sentences as questions or non-questions, without considering punctuation. The models were trained and optimized on chat data from a Swedish insurance company, as well as user comments data on articles from a newspaper. The results showed that the LSTM model performed better than the Random Forest. However, the difference was small and therefore Random Forest could still be a preferable alternative in some use cases due to its simplicity and its ability to handle noisy data. The models’ performances were not dramatically improved after hyper parameter optimization. A literature study was also conducted aimed at exploring how customer service can be automated using a chatbot and what features and functionality should be prioritized by management during such an implementation. The findings of the study showed that a data driven design should be used, where features are derived based on the specific needs and customers of the organization. However, three features were general enough to be presented the personality of the bot, its trustworthiness and in what stage of the value chain the chatbot is implemented. / Språkteknologi och textklassificering är vetenskapliga områden som tillägnats mycket uppmärksamhet av forskare inom maskininlärning. Nya metoder och modeller presenteras årligen, men mindre fokus riktas på att jämföra modeller av olika karaktär. Den här uppsatsen jämför Random Forest med ett Long Short-Term Memory neuralt nätverk genom att undersöka hur väl modellerna klassificerar meningar som frågor eller icke-frågor, utan att ta hänsyn till skiljetecken. Modellerna tränades och optimerades på användardata från ett svenskt försäkringsbolag, samt kommentarer från nyhetsartiklar. Resultaten visade att LSTM-modellen presterade bättre än Random Forest. Skillnaden var dock liten, vilket innebär att Random Forest fortfarande kan vara ett bättre alternativ i vissa situationer tack vare dess enkelhet. Modellernas prestanda förbättrades inte avsevärt efter hyperparameteroptimering. En litteraturstudie genomfördes även med målsättning att undersöka hur arbetsuppgifter inom kundsupport kan automatiseras genom införandet av en chatbot, samt vilka funktioner som bör prioriteras av ledningen inför en sådan implementation. Resultaten av studien visade att en data-driven approach var att föredra, där funktionaliteten bestämdes av användarnas och organisationens specifika behov. Tre funktioner var dock tillräckligt generella för att presenteras personligheten av chatboten, dess trovärdighet och i vilket steg av värdekedjan den implementeras.
|
42 |
From Word Embeddings to Large Vocabulary Neural Machine TranslationJean, Sébastien 04 1900 (has links)
Dans ce mémoire, nous examinons certaines propriétés
des représentations distribuées de mots et nous proposons une technique
pour élargir le vocabulaire des systèmes de traduction automatique neurale.
En premier lieu, nous considérons un problème de résolution d'analogies
bien connu et examinons l'effet de poids adaptés à la position, le choix de la
fonction de combinaison et l'impact de l'apprentissage supervisé.
Nous enchaînons en montrant que des représentations distribuées simples basées
sur la traduction peuvent atteindre ou dépasser l'état de l'art sur le test de
détection de synonymes TOEFL et sur le récent étalon-or SimLex-999. Finalament,
motivé par d'impressionnants résultats obtenus avec des représentations distribuées
issues de systèmes de traduction neurale à petit vocabulaire (30 000 mots),
nous présentons une approche compatible à l'utilisation de cartes graphiques
pour augmenter la taille du vocabulaire par plus d'un ordre de magnitude.
Bien qu'originalement développée seulement pour obtenir les représentations
distribuées, nous montrons que cette technique fonctionne plutôt bien sur des
tâches de traduction, en particulier de l'anglais vers le français (WMT'14). / In this thesis, we examine some properties of word embeddings
and propose a technique to handle large vocabularies in neural
machine translation. We first look at a well-known analogy task
and examine the effect of position-dependent weights, the choice
of combination function and the impact of supervised learning.
We then show that
simple embeddings learnt with translational contexts can match or surpass
the state of the art on the TOEFL synonym detection task and on
the recently introduced SimLex-999 word similarity gold standard. Finally,
motivated by impressive results obtained by small-vocabulary (30,000 words)
neural machine translation embeddings on some word similarity tasks, we
present a GPU-friendly approach to increase the vocabulary size
by more than an order of magnitude. Despite originally being developed for
obtaining the embeddings only, we show that this technique
actually works quite well on actual translation tasks, especially
for English to French (WMT'14).
|
43 |
Shlukování slov podle významu / Word Sense ClusteringJadrníček, Zbyněk January 2015 (has links)
This thesis is focused on the problem of semantic similarity of words in English language. At first reader is informed about theory of word sense clustering, then there are described chosen methods and tools related to the topic. In the practical part we design and implement system for determining semantic similarity using Word2Vec tool, particularly we focus on biomedical texts of MEDLINE database. At the end of the thesis we discuss reached results and give some ideas to improve the system.
|
44 |
Rozpoznání pojmenovaných entit v textuSüss, Martin January 2019 (has links)
This thesis deals with the named entity recognition (NER) in text. It is realized by machine learning techniques. Recently, techniques for creating word embeddings models have been introduced. These word vectors can encode many useful relationships between words in text data, such as their syntactic or semantic similarity. Modern NER systems use these vector features for improving their quality. However, only few of them investigate in greater detail how much these vectors have impact on recognition and whether they can be optimized for even greater recognition quality. This thesis examines various factors that may affect the quality of word embeddings, and thus the resulting quality of the NER system. A series of experiments have been performed, which examine these factors, such as corpus quality and size, vector dimensions, text preprocessing techniques, and various algorithms (Word2Vec, GloVe and FastText) and their parameters. Their results bring useful findings that can be used within creation of word vectors and thus indirectly increase the resulting quality of NER systems.
|
45 |
Parallel Algorithms for Machine LearningMoon, Gordon Euhyun 02 October 2019 (has links)
No description available.
|
46 |
Implementing Machine Learning in the Credit Process of a Learning Organization While Maintaining Transparency Using LIMEMalmberg, Jacob, Nystad Öhman, Marcus, Hotti, Alexandra January 2018 (has links)
To determine whether a credit limit for a corporate client should be changed, a financial institution writes a PM containingtext and financial data that then is assessed by a credit committee which decides whether to increase the limit or not. To make thisprocess more efficient, machine learning algorithms was used to classify the credit PMs instead of a committee. Since most machinelearning algorithms are black boxes, the LIME framework was used to find the most important features driving the classification. Theresults of this study show that credit memos can be classified with high accuracy and that LIME can be used to indicate which parts ofthe memo had the biggest impact. This implicates that the credit process could be improved by utilizing machine learning, whilemaintaining transparency. However, machine learning may disrupt learning processes within the organization. / För att bedöma om en kreditlimit för ett företag ska förändras eller inte skriver ett finansiellt institut ett PM innehållande text och finansiella data. Detta PM granskas sedan av en kreditkommitté som beslutar om limiten ska förändras eller inte. För att effektivisera denna process användes i denna rapport maskininlärning istället för en kreditkommitté för att besluta om limiten ska förändras. Eftersom de flesta maskininlärningsalgoritmer är svarta lådor så användes LIME-ramverket för att hitta de viktigaste drivarna bakom klassificeringen. Denna studies resultat visar att kredit-PM kan klassificeras med hög noggrannhet och att LIME kan visa vilken del av ett PM som hade störst påverkan vid klassificeringen. Implikationerna av detta är att kreditprocessen kan förbättras av maskininlärning, utan att förlora transparens. Maskininlärning kan emellertid störa lärandeprocesser i organisationen, varför införandet av dessa algoritmer bör vägas mot hur betydelsefullt det är att bevara och utveckla kunskap inom organisationen.
|
47 |
Three Essays on Sourcing DecisionsOsborn, Beverly January 2022 (has links)
No description available.
|
48 |
Semantically Aligned Sentence-Level Embeddings for Agent Autonomy and Natural Language UnderstandingFulda, Nancy Ellen 01 August 2019 (has links)
Many applications of neural linguistic models rely on their use as pre-trained features for downstream tasks such as dialog modeling, machine translation, and question answering. This work presents an alternate paradigm: Rather than treating linguistic embeddings as input features, we treat them as common sense knowledge repositories that can be queried using simple mathematical operations within the embedding space, without the need for additional training. Because current state-of-the-art embedding models were not optimized for this purpose, this work presents a novel embedding model designed and trained specifically for the purpose of "reasoning in the linguistic domain".Our model jointly represents single words, multi-word phrases, and complex sentences in a unified embedding space. To facilitate common-sense reasoning beyond straightforward semantic associations, the embeddings produced by our model exhibit carefully curated properties including analogical coherence and polarity displacement. In other words, rather than training the model on a smorgaspord of tasks and hoping that the resulting embeddings will serve our purposes, we have instead crafted training tasks and placed constraints on the system that are explicitly designed to induce the properties we seek. The resulting embeddings perform competitively on the SemEval 2013 benchmark and outperform state-of- the-art models on two key semantic discernment tasks introduced in Chapter 8.The ultimate goal of this research is to empower agents to reason about low level behaviors in order to fulfill abstract natural language instructions in an autonomous fashion. An agent equipped with an embedding space of sucient caliber could potentially reason about new situations based on their similarity to past experience, facilitating knowledge transfer and one-shot learning. As our embedding model continues to improve, we hope to see these and other abilities become a reality.
|
49 |
Classifying personal data on contextual information / Klassificering av persondata från kontextuell informationDath, Carl January 2023 (has links)
In this thesis, a novel approach to classifying personal data is tested. Previous personal data classification models read the personal data before classifying it. However, this thesis instead investigates an approach to classify personal data by looking at contextual information frequently available in data sets. The thesis compares the well-researched word embedding methods Word2Vec, Global representations of Vectors (GloVe) and Bidirectional Encoder Representations from Transformers (BERT) used in conjunction with the different types of classification methods Bag Of Word representation (BOW), Convolutional Neural Networks (CNN), and Long Short-term Memory (LSTM) when solving a personal data classification task. The comparisons are made by extrinsically evaluating the different embeddings' and models' performance in a personal data classification task on a sizable collection of well-labeled datasets belonging to Spotify. The results suggest that the embedded representations of the contextual data capture enough information to be able to classify personal data both when classifying non-personal data against personal data, and also when classifying different types of personal data from each other. / I denna uppsats undersöks ett nytt tillvägagångssätt att klassificera personlig data. Tidigare dataklassificerings modeller läser data innan den klassificerar den. I denna uppsats undersöks istället ett tillvägagångssätt där den kontextuella informationen används. Uppsatsen jämför flera väletablerade metoder för 'word embedding' så som Word2Vec, Global representations of Vectors (GloVe) och Bidirectional Encoder Representations from Transformers (BERT) i kombination med klassificeringsmodellerna Bag Of Word representation (BOW), Convolutional Neural Networks (CNN) och Long Short-term Memory (LSTM). Modellerna jämförs genom att evaluera deras förmåga att klassificera olika typer av personlig data baserad på namngivning och beskrivning av dataset. Resultaten pekar på att representationerna samt modellerna fångar tillräckligt med information för att kunna klassificera personlig data baserat på den kontextuell information som gavs. Utöver detta antyder resultaten att modellerna även klarar av att urskilja olika typer av personlig data från varandra.
|
50 |
What Machines Understand about Personality Words after Reading the NewsMoyer, Eric David 15 December 2014 (has links)
No description available.
|
Page generated in 0.0309 seconds