• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 9
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 64
  • 64
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Carbon Nanostructure Based Electrodes for High Efficiency Dye Sensitize Solar Cell

Das, Santanu 14 June 2012 (has links)
Synthesis and functionalization of large-area graphene and its structural, electrical and electrochemical properties has been investigated. First, the graphene films, grown by thermal chemical vapor deposition (CVD), contain three to five atomic layers of graphene, as confirmed by Raman spectroscopy and high-resolution transmission electron microscopy. Furthermore, the graphene film is treated with CF4 reactive-ion plasma to dope fluorine ions into graphene lattice as confirmed by X-ray photoelectron spectroscopy (XPS) and UV-photoemission spectroscopy (UPS). Electrochemical characterization reveals that the catalytic activity of graphene for iodine reduction enhanced with increasing plasma treatment time, which is attributed to increase in catalytic sites of graphene for charge transfer. The fluorinated graphene is characterized as a counter-electrode (CE) in a dye-sensitized solar cell (DSSC) which shows ~ 2.56% photon to electron conversion efficiency with ~11 mAcm−2 current density. Second, the large scale graphene film is covalently functionalized with HNO3 for high efficiency electro-catalytic electrode for DSSC. The XPS and UPS confirm the covalent attachment of C-OH, C(O)OH and NO3- moieties with carbon atoms through sp2-sp3 hybridization and Fermi level shift of graphene occurs under different doping concentrations, respectively. Finally, CoS-implanted graphene (G-CoS) film was prepared using CVD followed by SILAR method. The G-CoS electro-catalytic electrodes are characterized in a DSSC CE and is found to be highly electro-catalytic towards iodine reduction with low charge transfer resistance (Rct ~5.05 Wcm2) and high exchange current density (J0~2.50 mAcm-2). The improved performance compared to the pristine graphene is attributed to the increased number of active catalytic sites of G-CoS and highly conducting path of graphene. We also studied the synthesis and characterization of graphene-carbon nanotube (CNT) hybrid film consisting of graphene supported by vertical CNTs on a Si substrate. The hybrid film is inverted and transferred to flexible substrates for its application in flexible electronics, demonstrating a distinguishable variation of electrical conductivity for both tension and compression. Furthermore, both turn-on field and total emission current was found to depend strongly on the bending radius of the film and were found to vary in ranges of 0.8 – 3.1 V/μm and 4.2 – 0.4 mA, respectively.
22

Versatile and Tunable Transparent Conducting Electrodes Based on Doped Graphene

Mansour, Ahmed 25 November 2016 (has links)
The continued growth of the optoelectronics industry and the emergence of wearable and flexible electronics will continue to place an ever increasing pressure on replacing ITO, the most widely used transparent conducting electrode (TCE). Among the various candidates, graphene shows the highest optical transmittance in addition to promising electrical transport properties. The currently available large-scale synthesis routes of graphene result in polycrystalline samples rife with grain boundaries and other defects which limit its transport properties. Chemical doping of graphene is a viable route towards increasing its conductivity and tuning its work function. However, dopants are typically present at the surface of the graphene sheet, making them highly susceptible to degradation in environmental conditions. Few-layers graphene (FLG) is a more resilient form of graphene exhibiting higher conductivity and performance stability under stretching and bending as contrasted to single-layer graphene. In addition FLG presents the advantage of being amenable bulk doping by intercalation. Herein, we explore non-covalent doping routes of CVD FLG, such as surface doping, intercalation and combination thereof, through in-depth and systematic characterization of the electrical transport properties and energy levels shifts. The intercalation of FLG with Br2 and FeCl3 is demonstrated, showing the highest improvements of the figure of merit of TCEs of any doping scheme, which results from up to a five-fold increase in conductivity while maintaining the transmittance within 3% of that for the pristine value. Importantly the intercalation yields TCEs that are air-stable, due to encapsulation of the intercalant in the bulk of FLG. Surface doping with novel solution-processed metal-organic molecular species (n- and p-type) is demonstrated with an unprecedented range of work function modulation, resulting from electron transfer and the formation of molecular surface dipoles. However, the conductivity increases compared modestly to intercalation as the electron transfer is limited to the uppermost graphene layers. Finally, a novel and universal multi-modal doping strategy is developed, thanks to the unique platform offered by FLG, where surface and intercalation doping are combined to mutually achieve high conductivity with an extended tunability of the work function. This work presents doped-FLG as a prospective and versatile candidate among emerging TCEs, given the need for efficient and stable doping routes capable of controllably tuning its properties to meet the criteria of a broad range of applications.
23

Use of local electrochemical techniques for corrosion studies of stainless steels

Fuertes, Nuria January 2016 (has links)
The excellent corrosion resistance of stainless steels arises from the presence of a passive film on its surface. Above 10.5wt% Cr a chromium oxide of 1-3 nm is formed on the surface of the metal that in case of damage will reform and hinder further dissolution of the metal. However, the passivity of the stainless steel can be altered by material factors and external factors; such as the composition of the underlying phases, external loads or thermal treatments. In this work the local electrochemical techniques Scanning Vibrating Electrode Technique (SVET) and Scanning Kelvin Probe Force Microscopy (SKPFM) and the local characterization techniques X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) have been used to investigate corrosion phenomena of stainless alloys based on measurements of corrosion current density, work function, thickness and composition of the oxide. The effect on work function of the thickness of the passive film and composition of the underlying phases was investigated for 301LN austenitic stainless steel (Paper I) and a heat treated superduplex 25Cr7Ni type stainless steel (Paper II). It was shown that the work function can be an indicator of corrosion resistance of the phases in the microstructure, and that the composition of the underlying phases had a greater effect on the work function than the thickness of the passive film. External factors such mechanical deformation (Paper I) and welding (Paper III) altered the passivity of the steel and work function. It was found that plastic deformation decreased irreversibly the work function, whereas elastic deformation did not have any permanent effect. Thermal oxides affected the passivity of stainless steels welded joints and were detrimental for its corrosion resistance. Anodic activity, observed with SVET, and pitting corrosion were detected at the heat tint and attributed to the interaction between the composition and the thickness of the oxide. Brushing combined with pickling was recommended for recovering the passivity of stainless steels. / <p>QC 20160516</p>
24

Thermodynamic Molecular Switch in Sequence-Specific Hydrophobic Interactions

Chun, Paul W. 20 December 2001 (has links)
This communication will demonstrate the existence of a thermodynamic molecular switch in the pairwise, sequence-specific hydrophobic interaction of Ile-Ile, Leu-Ile, Val-Leu, or Ala-Leu over the temperature range of 273-333 K reported by Nemethy and Scheraga in 1962. Based on Chun's development of the Planck-Benzinger methodology, the change in inherent chemical bond energy at 0 K, ΔH°(T0), is 3.0 kcal mol-1 for Ile-Ile, 2.4 for Leu-Ile, 1.8 for Val-Leu, and 1.2 kcal mol-1 for Ala-Leu. The value of ΔH°(T0) decreases as the length of the hydrophobics side chain decreases. It is clear that the strength and stability of the hydrophobic interaction is determined by the packing density of the side chains, with Ala-Leu being the most stable. At , the thermal agitation energy, ∫0T ΔCp°(T)dT, is about five times greater than ΔH°(T0) in each case. Additionally, the thermal agitation energy for the same series, evaluated at , decreases in the same order, that is, as the length of the side chain decreases. This pairwise, sequence-specific hydrophobic interaction is highly similar in its thermodynamic behavior to that of other biological systems, except that the negative Gibbs free energy change minimum at occurs at a considerably higher temperature, 355 K compared to about 300 K. The melting temperature, , is also high, 470K compared to 343 K in a biological system. The implication is that the negative Gibbs free energy minimum at a well-defined >Ts> has it origin in the hydrophobic interactions, which are highly dependent on details of molecular structure. In addition to the four specific dipeptide interactions described, we have shown in our unpublished work the existence of a thermodynamic molecular switch in the interactions of 32 dipeptides wherein a change of sign in ΔCp°(T)reaction leads to a true negative minimum in the Gibbs free energy of reaction, and hence, a maximum in the related Keq. Indeed, all interacting biological systems that we have thus far examined using the Planck-Benzinger approach point to the universality of thermodynamic molecular switches.
25

SYNTHESIS AND CHARACTERIZATION OF NEODYMIUM SULFIDE BULK SAMPLES AND THIN FILMS

THACHERY, JUGUL RAVINDRAN 11 March 2002 (has links)
No description available.
26

The Importance of Contacts and Interfaces in Carbon-based Molecular Electronic Junctions

Yan, Haijun January 2009 (has links)
No description available.
27

THE STUDY OF SCANDATE CATHODE AND ITS CHARACTERIZATION UNDER VARIOUS STAGES OF PROCESSING

Zhang, Xiaomeng 01 January 2019 (has links)
Scandate cathode under various processing stages: scandia nano-powder, tungsten scandia mix powder, sintered and impregnated pellets, were characterized with techniques that included electron microscopy, EDS, XPS, and work function measurements. The size and shape uniformity of nano-scale scandia particles changed from round to square and polyhedron during heat treatment. Reduction in size and improvement in size uniformity as heat treating temperature increased were observed. When determining the highest Sc coverage, three assessment methods were used and with their combined results, it was concluded that set VII had the highest Sc at%. In the sintered pellets, it was observed with SEM that more initial scandia coverage in the mix powder sets corresponded to a larger number of scandia particles distributed over the tungsten surface. The structure of the cross section made on pellet surface was porous which was expected in any functional cathode. Kelvin probe measurements revealed that work function values of sintered pellets were similar and decreased by approximately 0.6 eV after the impregnation. A cross section on the impregnated pellet surface revealed that the pores that existed in sintered pellets were gone and filled with impregnated materials that emerged to the surface during impregnation.
28

Metal Gate Technology for Advanced CMOS Devices

Sjöblom, Gustaf January 2006 (has links)
<p>The development and implementation of a metal gate technology (alloy, compound, or silicide) into metal-oxide-semiconductor field effect transistors (MOSFETs) is necessary to extend the life of planar CMOS devices and enable further downscaling. This thesis examines possible metal gate materials for improving the performance of the gate stack and discusses process integration as well as improved electrical and physical measurement methodologies, tested on capacitor structures and transistors. </p><p>By using reactive PVD and gradually increasing the N<sub>2</sub>/Ar flow ratio, it was found that the work function (on SiO<sub>2</sub>) of the TiN<sub>x</sub> and ZrN<sub>x</sub> metal systems could be modulated ~0.7 eV from low near nMOS work functions to high pMOS work functions. After high-temperature anneals corresponding to junction activation, both metals systems reached mid-gap work function values. The mechanisms behind the work function changes are explained with XPS data and discussed in terms of metal gradients and Fermi level pinning due to extrinsic interface states.</p><p>A modified scheme for improved Fowler-Nordheim tunnelling is also shown, using degenerately doped silicon substrates. In that case, the work functions of ALD/PVD TaN were accurately determined on both SiO<sub>2</sub> and HfO<sub>2</sub> and benchmarked against IPE (Internal Photoemission) results. KFM (Kelvin Force Microscopy) was also used to physically measure the work functions of PVD TiN and Mo deposited on SiO<sub>2</sub>; the results agreed well with <i>C-V</i> and <i>I-V</i> data.</p><p>Finally, an appealing combination of novel materials is demonstrated with ALD TiN/Al<sub>2</sub>O<sub>3</sub>/HfAlO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>/strained-SiGe surface channel pMOS devices. The drive current and transconductance were measured to be 30% higher than the Si reference, clearly demonstrating increased mobility and the absence of polydepletion. Finally, using similarly processed transistors with Al<sub>2</sub>O<sub>3</sub> dielectric instead, low-temperature water vapour annealing was shown to improve the device characteristics by reducing the negative charge within the ALD Al<sub>2</sub>O<sub>3</sub>.</p>
29

Metal Gate Technology for Advanced CMOS Devices

Sjöblom, Gustaf January 2006 (has links)
The development and implementation of a metal gate technology (alloy, compound, or silicide) into metal-oxide-semiconductor field effect transistors (MOSFETs) is necessary to extend the life of planar CMOS devices and enable further downscaling. This thesis examines possible metal gate materials for improving the performance of the gate stack and discusses process integration as well as improved electrical and physical measurement methodologies, tested on capacitor structures and transistors. By using reactive PVD and gradually increasing the N2/Ar flow ratio, it was found that the work function (on SiO2) of the TiNx and ZrNx metal systems could be modulated ~0.7 eV from low near nMOS work functions to high pMOS work functions. After high-temperature anneals corresponding to junction activation, both metals systems reached mid-gap work function values. The mechanisms behind the work function changes are explained with XPS data and discussed in terms of metal gradients and Fermi level pinning due to extrinsic interface states. A modified scheme for improved Fowler-Nordheim tunnelling is also shown, using degenerately doped silicon substrates. In that case, the work functions of ALD/PVD TaN were accurately determined on both SiO2 and HfO2 and benchmarked against IPE (Internal Photoemission) results. KFM (Kelvin Force Microscopy) was also used to physically measure the work functions of PVD TiN and Mo deposited on SiO2; the results agreed well with C-V and I-V data. Finally, an appealing combination of novel materials is demonstrated with ALD TiN/Al2O3/HfAlOx/Al2O3/strained-SiGe surface channel pMOS devices. The drive current and transconductance were measured to be 30% higher than the Si reference, clearly demonstrating increased mobility and the absence of polydepletion. Finally, using similarly processed transistors with Al2O3 dielectric instead, low-temperature water vapour annealing was shown to improve the device characteristics by reducing the negative charge within the ALD Al2O3.
30

The design, synthesis, and use of phosphonic acids for the surface modification of metal oxides

Hotchkiss, Peter J. 17 November 2008 (has links)
Phosphonic acids are known to bind strongly to a variety of metal oxide surfaces. Phosphonic acids were designed in order to impart specific properties to the surface of a range of metal oxides upon formation of a monolayer. A large number of novel phosphonic acids were synthesized and fully characterized. The binding of phosphonic acids to the surface of several metal oxides, such as indium tin oxide (ITO) and barium titanate, was studied in detail and determined to be a mixture of bidentate and tridentate binding modes. The modification of several key surface properties of ITO by phosphonic acid modification was also studied. The work function of ITO could be increased or decreased with respect to unmodified ITO by controlling the dipole of phosphonic acids bound to the surface. Additionally, the surface energy could be substantially lowered by attaching phosphonic acids with non-polar terminal functional groups to the ITO surface. The ability to control these surface properties resulted in organic light-emitting diodes (OLEDs) which showed superior lifetimes and stability with respect to OLEDs incorporating ITO without a phosphonic acid monolayer. In addition, the binding of phosphonic acids to a number of other oxides, such as zinc oxide and zeolites, was also studied.

Page generated in 0.1084 seconds