• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 1
  • Tagged with
  • 10
  • 10
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metal Gate Technology for Advanced CMOS Devices

Sjöblom, Gustaf January 2006 (has links)
<p>The development and implementation of a metal gate technology (alloy, compound, or silicide) into metal-oxide-semiconductor field effect transistors (MOSFETs) is necessary to extend the life of planar CMOS devices and enable further downscaling. This thesis examines possible metal gate materials for improving the performance of the gate stack and discusses process integration as well as improved electrical and physical measurement methodologies, tested on capacitor structures and transistors. </p><p>By using reactive PVD and gradually increasing the N<sub>2</sub>/Ar flow ratio, it was found that the work function (on SiO<sub>2</sub>) of the TiN<sub>x</sub> and ZrN<sub>x</sub> metal systems could be modulated ~0.7 eV from low near nMOS work functions to high pMOS work functions. After high-temperature anneals corresponding to junction activation, both metals systems reached mid-gap work function values. The mechanisms behind the work function changes are explained with XPS data and discussed in terms of metal gradients and Fermi level pinning due to extrinsic interface states.</p><p>A modified scheme for improved Fowler-Nordheim tunnelling is also shown, using degenerately doped silicon substrates. In that case, the work functions of ALD/PVD TaN were accurately determined on both SiO<sub>2</sub> and HfO<sub>2</sub> and benchmarked against IPE (Internal Photoemission) results. KFM (Kelvin Force Microscopy) was also used to physically measure the work functions of PVD TiN and Mo deposited on SiO<sub>2</sub>; the results agreed well with <i>C-V</i> and <i>I-V</i> data.</p><p>Finally, an appealing combination of novel materials is demonstrated with ALD TiN/Al<sub>2</sub>O<sub>3</sub>/HfAlO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>/strained-SiGe surface channel pMOS devices. The drive current and transconductance were measured to be 30% higher than the Si reference, clearly demonstrating increased mobility and the absence of polydepletion. Finally, using similarly processed transistors with Al<sub>2</sub>O<sub>3</sub> dielectric instead, low-temperature water vapour annealing was shown to improve the device characteristics by reducing the negative charge within the ALD Al<sub>2</sub>O<sub>3</sub>.</p>
2

Metal Gate Technology for Advanced CMOS Devices

Sjöblom, Gustaf January 2006 (has links)
The development and implementation of a metal gate technology (alloy, compound, or silicide) into metal-oxide-semiconductor field effect transistors (MOSFETs) is necessary to extend the life of planar CMOS devices and enable further downscaling. This thesis examines possible metal gate materials for improving the performance of the gate stack and discusses process integration as well as improved electrical and physical measurement methodologies, tested on capacitor structures and transistors. By using reactive PVD and gradually increasing the N2/Ar flow ratio, it was found that the work function (on SiO2) of the TiNx and ZrNx metal systems could be modulated ~0.7 eV from low near nMOS work functions to high pMOS work functions. After high-temperature anneals corresponding to junction activation, both metals systems reached mid-gap work function values. The mechanisms behind the work function changes are explained with XPS data and discussed in terms of metal gradients and Fermi level pinning due to extrinsic interface states. A modified scheme for improved Fowler-Nordheim tunnelling is also shown, using degenerately doped silicon substrates. In that case, the work functions of ALD/PVD TaN were accurately determined on both SiO2 and HfO2 and benchmarked against IPE (Internal Photoemission) results. KFM (Kelvin Force Microscopy) was also used to physically measure the work functions of PVD TiN and Mo deposited on SiO2; the results agreed well with C-V and I-V data. Finally, an appealing combination of novel materials is demonstrated with ALD TiN/Al2O3/HfAlOx/Al2O3/strained-SiGe surface channel pMOS devices. The drive current and transconductance were measured to be 30% higher than the Si reference, clearly demonstrating increased mobility and the absence of polydepletion. Finally, using similarly processed transistors with Al2O3 dielectric instead, low-temperature water vapour annealing was shown to improve the device characteristics by reducing the negative charge within the ALD Al2O3.
3

Investigation of Novel Metal Gate and High-κ Dielectric Materials for CMOS Technologies

Westlinder, Jörgen January 2004 (has links)
The demands for faster, smaller, and less expensive electronic equipments are basically the driving forces for improving the speed and increasing the packing density of microelectronic components. Down-scaling of the devices is the principal method to realize these requests. For future CMOS devices, new materials are required in the transistor structure to enable further scaling and improve the transistor performance. This thesis focuses on novel metal gate and high-κ dielectric materials for future CMOS technologies. Specifically, TiN and ZrN gate electrode materials were studied with respect to work function and thermal stability. High work function, suitable for pMOS transistors, was extracted from both C-V and I-V measurements for PVD and ALD TiN in TiN/SiO2/Si MOS capacitor structures. ZrNx/SiO2/Si MOS capacitors exhibited n-type work function when the low-resistivity ZrNx was deposited at low nitrogen gas flow. Further, variable work function by 0.6 eV was achieved by reactive sputter depositing TiNx or ZrNx at various nitrogen gas flow. Both metal-nitride systems demonstrate a shift in work function after RTP annealing, which is discussed in terms of Fermi level pinning due to extrinsic interface states. Still, the materials are promising in a gate last process as well as show potential as complementary gate electrodes. The dielectric constant of as-deposited (Ta2O5)1-x(TiO2)x thin films is around 22, whereas that of AlN is about 10. The latter is not dependent on the degree of crystallinity or on the measurement frequency up to 10 GHz. Both dielectrics exhibit characteristics appropriate for integrated capacitors. Finally, utilization of novel materials were demonstrated in strained SiGe surface-channel pMOSFETs with an ALD TiN/Al2O3 gate stack. The transistors were characterized with standard I-V, charge pumping, and low-frequency noise measurements. Correlation between the mobility and the oxide charge was found. Improved transistor performance was achieved by conducting low-temperature water vapor annealing, which reduced the negative charge in the Al2O3.
4

Otimização do processo de disposição de filmes TiN e TiZrN em aço inoxidável utilizando planejamento experimental fatorial. / Optimization of the TiN and TiZrN films arrangement process in stainless steel using factorial experimental design.

BATISTA NETO, Leopoldo Viana. 12 April 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-04-12T21:33:19Z No. of bitstreams: 1 LEOPOLDO VIANA BATISTA NETO - DISSERTAÇÃO PPG-CEMat 2014..pdf: 2575700 bytes, checksum: a10f0685285492d2302637ed070d9631 (MD5) / Made available in DSpace on 2018-04-12T21:33:19Z (GMT). No. of bitstreams: 1 LEOPOLDO VIANA BATISTA NETO - DISSERTAÇÃO PPG-CEMat 2014..pdf: 2575700 bytes, checksum: a10f0685285492d2302637ed070d9631 (MD5) Previous issue date: 2014-08-28 / Filmes finos de Nitreto de titânio (TiN) e Nitreto de titânio-zircônio (TiZrN) foram depositados sobre substratos de aço inoxidável 316 usando o método de Sputtering RF para deposição dos filmes. O planejamento de experimentos (DOE) tem sido reconhecido como um método poderoso para otimizar um processo complexo na indústria. Os efeitos do presente estudo foram verificar a viabilidade e confiabilidade da aplicação do método DOE em processos de Sputtering RF, otimizar os parâmetros de processamento para o processo de deposição, identificando os parâmetros sensíveis que afetam a espessura da camada depositada (E.C.D) e a resistência à corrosão (Ecorr.). Para o método de Sputtering RF, dois parâmetros, a taxa e tempo de deposição foram escolhidos para serem os parâmetros do processo. Depois da deposição, a estrutura de camada depositada foi caracterizada por Difração de Raios X (DRX) e por Microscopia Eletrônica de Varredura (MEV). Após o ensaio de polarização, a corrosão foi realizada a fim de investigar a relação entre o início da corrosão e a espessura da camada depositada. A análise de variância (ANOVA) foi realizada para avaliar os parâmetros sensíveis e prever as condições ideais. Com base na análise estatística, os parâmetros mais sensíveis no processo de Sputtering RF foram tanto a taxa como o tempo de deposição do filme fino. As melhores condições de deposição foram a taxa de deposição máxima e tempo máximo. / Titanium nitride (TiN) and titanium-zirconium nitride (TiZrN) thin films were deposited on ASTM F 138 stainless steel substrates using de Sputtering RF methods. Design of experiment (DOE) has long been recognized as a powerful method to optimize a complex process in industry. The purposes of present study were to verify the feasibility and reliability of the application of DOE method on de Sputtering RF processes and optimize the processing parameters for the deposition process, in which the sensitive parameters that affected the film properties were also identified. For de Sputtering RF method, two parameters, deposition rate and time were chosen to be the operating parameters. After deposition, the thin film structure was characterized by X-ray diffraction (XRD), and high-resolution scanning electron microscopy (SEM). After the polarization test, the corrosion analysis was carried out in order to investigate the relationship between the corrosion initiation and the thickness of the deposited layer. The analysis of variance (ANOVA) was conducted to assess the sensitive parameters and predict the optimum conditions. Based on the statistical analysis, the most sensitive parameters in de Sputtering RF process were both the deposition rate and time. The optimum deposition conditions in each system were maximum deposition rate and time.
5

Deposição de filmes finos de nitreto de zircônio para aplicação em biomateriais

Roman, Daiane 25 November 2010 (has links)
Filmes finos nanométricos de nitreto de zircônio (ZrN) foram depositados sobre diferentes substratos, objetivando-se estudar a microestrutura da superfície e investigar o comportamento eletroquímico para obter a melhor composição que minimize reações de corrosão. Os filmes finos foram produzidos por deposição física de vapor (PVD). Foi estudada a influência da pressão parcial do gás nitrogênio, do tempo e da temperatura de deposição nas propriedades da superfície. Os filmes de ZrN foram caracterizados por espectrometria de retroespalhamento Rutherford (RBS), espectroscopia de fotoelétrons gerados por raios X (XPS), difração de raios X (DRX), nanodureza, microscopia eletrônica de varredura (MEV) e ensaios de corrosão. As propriedades dos filmes finos de ZrN variam com os parâmetros de deposição. Quanto maior a temperatura usada na deposição dos filmes maior a resistência contra corrosão. Quando depositado sobre o Titânio e sobre uma liga de NiTi, os ensaios de corrosão mostram que o revestimento de ZrN depositado por PVD pode efetivamente melhorar a resistência contra a corrosão. / Submitted by Marcelo Teixeira (mvteixeira@ucs.br) on 2014-06-04T16:16:38Z No. of bitstreams: 1 Dissertacao Daiane Roman.pdf: 1913372 bytes, checksum: 3fc49a90d63debc4754aeb458d421795 (MD5) / Made available in DSpace on 2014-06-04T16:16:38Z (GMT). No. of bitstreams: 1 Dissertacao Daiane Roman.pdf: 1913372 bytes, checksum: 3fc49a90d63debc4754aeb458d421795 (MD5) / Zirconium nitride (ZrN) nanometric films were deposited onto different substrates, in order to study the surface microstructure and also to investigate the electrochemical behavior to obtain a better composition that minimizes corrosion reactions. The thin films were produced by physical vapor deposition (PVD). The influence of the nitrogen partial pressure, deposition time and temperature over the surface properties was studied. Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), nanohardness, scanning electron microscopy (SEM) and corrosion experiments were performed to characterize the ZrN thin films. The thin films properties and microstructure changes according to the deposition parameters. The corrosion against resistance increases with temperature used in the films deposition. Corrosion tests show that ZrN thin films deposited by PVD onto titanium and onto alloy nitinol substrate effectively improve the corrosion resistance.
6

Deposição de filmes finos de nitreto de zircônio para aplicação em biomateriais

Roman, Daiane 25 November 2010 (has links)
Filmes finos nanométricos de nitreto de zircônio (ZrN) foram depositados sobre diferentes substratos, objetivando-se estudar a microestrutura da superfície e investigar o comportamento eletroquímico para obter a melhor composição que minimize reações de corrosão. Os filmes finos foram produzidos por deposição física de vapor (PVD). Foi estudada a influência da pressão parcial do gás nitrogênio, do tempo e da temperatura de deposição nas propriedades da superfície. Os filmes de ZrN foram caracterizados por espectrometria de retroespalhamento Rutherford (RBS), espectroscopia de fotoelétrons gerados por raios X (XPS), difração de raios X (DRX), nanodureza, microscopia eletrônica de varredura (MEV) e ensaios de corrosão. As propriedades dos filmes finos de ZrN variam com os parâmetros de deposição. Quanto maior a temperatura usada na deposição dos filmes maior a resistência contra corrosão. Quando depositado sobre o Titânio e sobre uma liga de NiTi, os ensaios de corrosão mostram que o revestimento de ZrN depositado por PVD pode efetivamente melhorar a resistência contra a corrosão. / Zirconium nitride (ZrN) nanometric films were deposited onto different substrates, in order to study the surface microstructure and also to investigate the electrochemical behavior to obtain a better composition that minimizes corrosion reactions. The thin films were produced by physical vapor deposition (PVD). The influence of the nitrogen partial pressure, deposition time and temperature over the surface properties was studied. Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), nanohardness, scanning electron microscopy (SEM) and corrosion experiments were performed to characterize the ZrN thin films. The thin films properties and microstructure changes according to the deposition parameters. The corrosion against resistance increases with temperature used in the films deposition. Corrosion tests show that ZrN thin films deposited by PVD onto titanium and onto alloy nitinol substrate effectively improve the corrosion resistance.
7

Avaliação da resistência à corrosão de filmes finos de ZrN e TiZrN depositados em aço inoxidável biomédico. / Evaluation of the corrosion resistance of thin films of ZrN and TiZrN deposited in biomedical stainless steel.

SOARES, André Lopes. 05 April 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-04-05T18:10:49Z No. of bitstreams: 1 ANDRÉ LOPES SOARES - DISSERTAÇÃO PPG-CEMat 2014..pdf: 6257060 bytes, checksum: 6c6fb12b0cbaaafb3788e358c240a5d5 (MD5) / Made available in DSpace on 2018-04-05T18:10:49Z (GMT). No. of bitstreams: 1 ANDRÉ LOPES SOARES - DISSERTAÇÃO PPG-CEMat 2014..pdf: 6257060 bytes, checksum: 6c6fb12b0cbaaafb3788e358c240a5d5 (MD5) Previous issue date: 2014-08-28 / Filmes finos de Nitreto de zircônio (ZrN) e nitreto da mistura titânio-zircônio (TiZrN) foram depositados sobre substratos de aço inoxidável 316L usando o método de RF Sputtering para deposição dos filmes. O planejamento de experimentos (DOE) tem sido reconhecido como um método poderoso para otimizar um processo complexo na indústria. Os efeitos do presente estudo foram verificar a viabilidade e confiabilidade da aplicação do método DOE em processos de RF Sputtering, otimizar os parâmetros de processamento para o processo de deposição, identificando os parâmetros sensíveis que afetam a espessura da camada depositada (E.C.D) e a resistência à corrosão (Ecorr.) Para o método de RF Sputtering, dois parâmetros, a taxa e tempo de deposição foram escolhidos para serem os parâmetros do processo. Depois da deposição, a estrutura de camada depositada foi caracterizada por Difração de Raios X (DRX) e por Microscopia Eletrônica de Varredura (MEV). Após o ensaio de polarização, a corrosão foi realizada a fim de investigar a relação entre o início da corrosão e a espessura da camada depositada. A análise de variância (ANOVA) foi realizada para avaliar os parâmetros sensíveis e prever as condições ideais. Com base na análise estatística, os parâmetros mais sensíveis no processo de RF Sputtering foram tanto a taxa como também o tempo de deposição do filme fino. As melhores condições de deposição foram a taxa de deposição máxima e tempo máximo. / Zirconium nitride (ZrN) and titanium-zirconium nitride (TiZrN) thin films were deposited on 316L stainless steel substrates using de RF Sputtering methods. Design of experiment (DOE) has long been recognized as a powerful method to optimize a complex process in industry. The purposes of present study were to verify the feasibility and reliability of the application of DOE method on de RF Sputtering processes and optimize the processing parameters for the deposition process, in which the sensitive parameters that affected the film properties were also identified. For de RF Sputtering method, two parameters, deposition rate and time were chosen to be the operating parameters. After deposition, the thin film structure was characterized by X-ray diffraction (XRD), and high-resolution scanning electron microscopy (SEM). After the polarization test, the corrosion analysis was carried out in order to investigate the relationship between the corrosion initiation and the thickness of the deposited layer. The analysis of variance (ANOVA) was conducted to assess the sensitive parameters and predict the optimum conditions. Based on the statistical analysis, the most sensitive parameters in de RF Sputtering process were both the deposition rate and time. The optimum deposition conditions in each system were maximum deposition rate and time.
8

Influência do teor de silício em filmes finos de nitreto de zircônio depositados por magnetron sputtering reativo / Influence of silicon content in zirconium nitride thin films deposited by reactive magnetron sputtering

Freitas, Flávio Gustavo Ribeiro 19 March 2016 (has links)
Zr-Si-N thin films were deposited by reactive magnetron sputtering to study silicon influence in the structure, morphology and properties such as hardness and oxidation resistance. Six thin films with silicon concentrations from 2.8 to 14.9 at.% were selected. Thin films morphology shows that there are no columnar grains, structure that is commonly observed in films deposited by sputtering. It was identified amorphous and crystalline areas in films microstructure, creating a structure composed by crystalline grains embedded in an amorphous phase, which were characterized by EDS as Zr and Si rich areas, respectively. XRD results indicate ZrN peaks intensity reduction and a broadening increase due silicon nitride segregation to grain boundaries, which is responsible for grain size reduction, that was calculated by Scherrer and reached magnitudes lower than 10 nm. XRD peaks displacement are observed for all samples and it can be explained due formation of a solid solution in which Si replaces Zr atoms in ZrN crystal lattice and due a strong interface between crystalline phase and amorphous one. XPS data reinforce the presence of compounds like ZrN and Si3N4 and it is also possible to infer the formation of a solid solution of Si in ZrN lattice. Oxidation tests were performed at temperatures in the range of 500°C to 1100°C. ZrN film is almost fully oxidized at 500°C, while films with high silicon content maintain ZrN grains stable at 700°C. When oxidized, ZrN films form monoclinic ZrO2 phase, but, in films with silicon addition, the stable phase is the tetragonal one. This happens due ZrN grain size reduction, because tetragonal phase has the lowest surface energy. Oxidation tests results confirm that there is a mechanism acting as diffusion barrier in films, preventing grains coalescence and oxygen diffusion into film structure. This mechanism is a direct consequence of silicon segregation process to grain boundaries, which ensures the formation of a nanostructure composed of ZrN grains embedded by an amorphous Si3N4 layer (nc-ZrN/a-Si3N4), allowing oxidation resistance improvement in at least 200°C. / Filmes finos de Zr-Si-N foram depositados por magnetron sputerring reativo para estudar a influência do teor de silício na estrutura, morfologia e propriedades como dureza e resistência a oxidação. Para tal, foram selecionados seis filmes com teor de Si entre 2,8 e 14,9 at.%. A morfologia demonstra que a estrutura colunar característica dos filmes depositados por sputtering não existe. A estrutura é composta por áreas cristalinas e outras amorfas, na qual os grãos cristalinos estão envolvidos pela fase amorfa, sendo que EDS detectou que estas fases são ricas em Zr e Si, respectivamente. Há redução de intensidade e alargamento dos picos de difração do ZrN, efeito provocado pela segregação do Si3N4 para região dos contornos, fato que propicia a redução do tamanho de grão, o qual foi calculado por Scherrer e atinge magnitude inferior a 10 nm. Os picos do DRX estão deslocados, fato justificado pela formação de uma solução sólida na qual o Si substituiu o Zr no reticulado do ZrN e pela forte interface formada entre as fases cristalina e amorfa. Dados de XPS reforçam a formação de uma estrutura bifásica de ZrN e Si3N4 e mostra indícios de que há uma solução sólida de Si no ZrN. Os ensaios de oxidação foram realizados em temperaturas de 500°C até 1100°C. O filme de ZrN praticamente se oxida a 500°C, enquanto nos filmes com altos teores de silício os grãos de ZrN se mantém estáveis até 700°C. Quando oxidado, os filmes de ZrN formam predominantemente ZrO2 na fase monoclínica, mas, nos filmes com adição de Si há a inversão para a fase tetragonal. Tal fato é fruto da redução do tamanho de grão, pois a fase tetragonal possui menor energia de superfície. Tais resultados ratificam que existe mecanismo atuando como barreira a difusão, o qual impede a coalescência dos grãos e a difusão do oxigênio. Este mecanismo é resultado do processo de segregação do silício para os contornos, o qual assegura a formação da nanoestrutura composta de grãos de ZrN embebidos por camada amorfa de Si3N4 (nc- ZrN/a-Si3N4) e permite aprimorar a resistência a oxidação em pelo menos 200°C.
9

Manufacturing methods for (U-Zr)N-fuels

Hollmer, Tobias January 2011 (has links)
In this work a manufacturing method for UN, ZrN and (U,Zr)N pellets was established at the nuclear fuel laboratory at KTH Stockholm/Sweden, which consists of the production of nitride powders and their sintering into pellets by spark plasma sintering. The nitride powders were produced by the hydriding-nitriding route using pure metal as starting material. This synthesis was performed in a stream of the particular reaction gas. A synthesis control and monitoring system was developed, which can follow the reactions in real time by measuring the gas flow difference before and after the reaction chamber. With the help of this system the hydriding and nitriding reactions of uranium and zirconium were studied in detail. Fine nitride powders were obtained; however, the production of zirconium nitride involved one milling step of the brittle zirconium hydride. Additionally uranium and zirconium alloys with different zirconium contents were produced and synthesized to nitride powders. It was found that also the alloys could be reduced to fine powder, but only by cyclic hydriding-dehydriding. Pellets were sintered out of uranium nitrides, zirconium nitrides, mixed nitrides and alloy nitrides. These experiments showed that relative densities of more than 90% can easily be achieved for all those powders. Pellets sintered from mechanically mixed nitride powders were found to still consist of two separate nitride phases, while nitride produced from alloy was demonstrated to be a monophasic solid solution both as powder and as sintered pellets.
10

Mechanism and Modeling of Contact Damage in ZrN-Zr and TiAIN-TiN Multilayer Hard Coatings

Verma, Nisha January 2012 (has links) (PDF)
With the amalgamation of hard coating in cutting tools industries for three decades now, a stage with proven performance has been reached. Today, nearly 40% of all cutting tools used in machining applications are sheltered with coatings. Coatings have proven to dramatically improve wear resistance, increase tool life and enable use at higher speed. Over the years TiN, TiAlN and TiC have emerged as potential materials to coat machining tools. Chemical vapor deposition was the first technology to be used to deposit these coatings followed by physical vapor deposition. Currently, extensive use is being made of cathodic arc evaporation and sputtering for coatings components. The principal limiting factor in the performance of these cutting tools lies in their failure due to the brittleness of these coatings. These hard coatings, usually coated on soft steel substrates, are subjected to contact damage during service. This contact damage is driven by mismatch strain between the elastically deforming film on a plastically deforming substrate. Understanding of the contact damage is the key parameter for improvement in the coating design. Contact damage involves initiation of cracks and subsequent propagation within coating. Multiple cracking modes are seen in nitride coatings on soft substrate and mutual interaction of cracks may lead to spallation of the coating, exposing the substrate to extreme service conditions. Hence visualization of subsurface crack trajectories facilitates the classification of benign and catastrophic modes of failure, which consequently allows us to tailor the coating architecture to eliminate catastrophic failure. Multilayers have shown to perform better then monolayer coatings. In multilayer coatings, application specific particular properties can be engineered by alternately stack-ing suitable layers. The multilayer utilizes benefits of interfaces by crack deflection, crack blunting and desirable transition in residual stress across the interface. Hence, designing interfaces is the key parameter in the multilayer coating. However, very few studies exist that describe experimental visualization of deformation modes in multilayer coatings with different types of interfaces, e.g. nitride/nitride and nitride/metal. Thus the prime objective of the present study is to comprehend the influence of different interface structures as well as its architecture on the various contact damage modes in these coatings. TiAlN/TiN has shown better tribological properties compared to its constituent monolayers. There is an order of magnitude augmentation in loads for cracking without any hardness enhancement relative to monolayers of constituents, with the additional feature that both constituents exhibit similar hardness and modulus. The resistance to cracking is seen to increase with increase in number of interfaces. Hence this uniqueness in toughening without drastic reduction in mechanical properties provides the motivation for understanding the fundamental mechanisms of toughening provided by the interfaces in these hard/hard coatings. Another combination for the present study is with interfaces between hard-soft phases ZrN/Zr, a composite that seeks to compromise hardness in order to achieve greater toughness. The selected combination has potential of providing a model system without any substoichiometric nitrides influencing the interfacial structure. There is a great need to optimize the metal fraction/thickness for exploiting the benefits of toughening without much compromise on hardness and stiffness, since the principal applications of these coatings lies in preventing erosive and corrosive wear. As all the deformation modes in theses coatings are stress driven, the influence of different variables on stress field would dictate the emerging damage. To understand the role of stress fields on contact damage, finite element method and an analytical model was used to predict the stress field within the coating. The TiAlN/TiN coatings were deposited by cathodic arc evaporation, while sputtering was employed to procure the ZrN/Zr multilayer coatings with much finer layer spacing. Microstructural characterization of the as received coatings was done by XRD, scanning electron microscopy, focused ion beam cross section machining and transmission electron microscopy. Mechanical properties like hardness and modulus were evaluated by nanoindentation with restricted penetration depths to allow measurements that were not influenced by the substrate. Contact damage was induced by micro indentation at high loads. Indentations were examined from plan view as well as cross section for getting details of crack nucleation as well as propagation trajectories. Focused ion beam was used to examine cross sections of indents as well as to prepare electron transparent thin foils for transmission electron microscopy examination of subsurface damage induced by indentation. To emphasize specific issues in detail, the present work is divided into four sections: 1 Microstructure and mechanical characterization of the as deposited coatings of ZrN/Zr multilayer (while that of TiAlN/TiN has been reported elsewhere) 2 Details of contact damage in ZrN/Zr coating 3 Resolution of micro mechanistic issues in TiAlN/TiN coating utilizing detailed microscopy 4 The effect of change in architecture through heat-treatment of ZrN/Zr multilayer coatings on the mechanical behavior and contact damage Detailed microstructural, compositional and mechanical characterization was done on ZrN/Zr as received multilayer coatings. Thickness of metal layer was seen to influence the texture in the nitride, thick metal acquiring basal texture in turn inducing (111) texture in the nitride to reduce interfacial energy. Microstructure revealed that the nitride grows with interrupted columnar grains, renucleating at each metal/nitride interface. Presence of both phases was confirmed at even very low bilayer spacing, with slight changes in multilayers architecture, from planar interfaces to curved interfaces. The chosen system proved to be an ideal system for multilayer study without formation of secondary nitrides. Residual stress and hardness reduced with increase in metal layer thickness, whereas modulus was seen to follow the rule of mixture value. Detailed contact damage study of ZrN/Zr is reported in section two with influence of volume fraction and metal layer thickness. All the experimental results were corroborated with finite element methods. A comparative study of contact damage of multilayer with monolayer was carried out with cross section as well as plan view of indents. Metal plasticity was able to distribute damage laterally as well as vertically, hence reducing the stress concentration. There lies an optimum thickness of the metal providing maximum toughening by increasing the threshold load required for edge cracking. The sliding of columns is resisted by the metal. However, thick metal layers promote microcracking in individual nitride layers. Cracking is restricted to within individual nitride layers, eliminating through thickness cracking. The intermediate metal thickness was able to provide a mechanism of laterally distributing sliding and hence a higher tolerance level of the indentation strain that can be accommodated without cracking. Thin metal multilayers were seen to show delamination, strongly influenced by the multilayer architecture. We use the finite element method to understand the influence of stress fields in driving these various modes of damage for varying volume fraction and metal layer thicknesses. It is demonstrated how metal plasticity results in stress enhancement in the nitride layer compared to a monolayer and reduces the shear stress, which is the driving force for columnar sliding. The micro cracking to columnar shearing transition with metal thickness was explained with the help of average shear and normal stress across the multilayer which could explain the transition from cracking and sliding to interfacial delamination in thin metal layer multilayers with enhancement in interfacial shear stress. TiAlN/TiN multilayer allowed to exploit a form of compositional contrast to measure the strain with respect to depth. Layers acting as strain markers quantify the amount of sliding in terms of the offset in layers with respect to depth within the coating. We illustrate with transmission electron micrographs, the flaw generation that occurs as a result of sliding of misaligned column boundaries. These boundary kinks,upon further loading, may lead to cracks running at an angle to the indentation axis in an otherwise dense, defect free, as deposited coating. A previous study illustrates the increase in resistance of multilayers to multiple modes of cracking that are seen in the monolayer nitride coatings on steel substrates. We provide evidence of the enhanced plasticity, seen as macroscopic bending, which in reality is column sliding in a series of distributed small steps. We discuss the role of misfit dislocations in spreading the material laterally to accommodate the constraints during indentation and lattice bending. Interfacial sliding is seen to reduce the stress concentration by distributing the vertical column sliding and accommodating the flaws generated by the sliding of misaligned column boundaries. Some preferred boundaries with special orientation relations do slide, while near the substrate, the sliding is facilitated by the relaxation in intrinsic residual stresses. An analytical model which was formulated earlier is used to support our experimental findings. Investigations of the plausible reasons for the naturally occurring multilayer mollusc sea shells to reach stiffnesses equal to the upper bound of the rule of mixture value have concluded that its brick and mortar organization is responsible for its exceptional mechanical properties. Inspired by the same model, heat treatment was used to change the architecture of the soft-hard metal/nitride combination from that of the planar interface of the as deposited multilayer to a brick and mortar arrangement. Such an interconnected ZrN microstructure was successfully achieved and the stiffness and hardness were both seen to increase relative to the as received coatings. The possible reasons for this enhancement are discussed in term of this newly emerged architecture ,change in residual stress as well as changes in stoichiometry after heat treatment. The contact damage, though, was found to be more catastrophic relative to the as deposited coating with increased propensities for edge and lateral cracking. This was attributed to the interconnected nitrides formed in the brick and mortar architecture as well as residual stress changes due to the dissolution of Zr in ZrN to form off-stoichiometric nitrides. The cracks feel the presence of the metal and deviate from the otherwise smooth trajectory and take a path along the interface of the metal packet and the interconnected nitride. Summarizing, the present study clearly illustrates the fact that interfaces play an important role in damage control under contact loading. Fracture and deformation are either controlled by metal plasticity, distributing the column sliding in metal/nitride multilayers or by interfacial sliding mediated by interfacial misfit dislocations in case of the nitride/nitride multilayer coatings. The effective role of interfaces is to distribute damage laterally as well as horizontally to relieve stresses and hence enhance the damage tolerance under indentation. Optimum metal layer thickness has been proposed for maximum toughening in the metal/nitride multilayer coating and the role of interfaces in providing modes of plasticity is presented for the nitride/nitride multilayer coatings by use of extensive transmission electron microscopic investigations. A new interconnected architecture coatings provides a unique way of combining stiffness and toughness along with scope for further developing such configurations with improved mechanical properties.

Page generated in 0.0728 seconds