• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La poesia di Andrea Zanzotto e il registro lacaniano del reale / La poésie d’Andrea Zanzotto et le registre lacanien du réel / The poetry of Andrea Zanzotto and the lacanian register of the real

Russo, Alberto 11 February 2017 (has links)
Cette recherche se propose de réaliser une lecture critique de l’œuvre d’Andrea Zanzotto (1921-2011) à travers la perspective du “registre du réel”, un des points conceptuels fondateurs de la théorie du psychanalyste Jacques Lacan (1901-1981). En prenant comme point de départ les résultats de Stefano Agosti (1930), critique psychanalytique qui a exploré avec profit la poésie de Zanzotto à travers les concepts de la phase structuraliste de la pensée lacanienne, on essaie de continuer cette exploration à travers les concepts de la phase du réel, c’est-à-dire de ce qui est exclu de l’ordre du langage.La recherche se compose de trois parties: une traversée de certains points de l’itinéraire zanzottien (partie I), des analyses textuelles détaillées (partie II) et une étude du rôle du lecteur et de certains éléments du paratexte (partie III). Trois explorations intégrées qui contribuent à comprendre le rapport de la poésie de Zanzotto avec la dimension du non-sens, de l’impossible à dire. / This research aims to realize a critical reading of the work of the Italian poet Andrea Zanzotto through the perspective of the Lacanian Real. What is Lacan’s Real? The real is a domain that is outside language, “that which resists symbolization absolutely” (Lacan).The work is composed of three parts. In the first one, we shall go through the poetical itinerary in order to describe the relationship of the poet with the fundamental object of his poetical universe: the landscape. In the second part, entitled Textual analysis, we shall verify the hypothesis of the first part on four single texts, describing particularly the typical unstructured textuality of Zanzotto’s poetry.In the last part, we shall both pay attention on Zanzotto’s idea of reading and on the idea of the paratext. At this level, the analysis shows us the changes of the structural shapes facing the void and the lack of meaning from another point of view.
2

Variações do fora

Mendes, Sávio Damato 27 March 2014 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-01-27T13:27:42Z No. of bitstreams: 1 saviodamatomendes.pdf: 828811 bytes, checksum: da0b9c008f1c08b673e1d0adac1d9c84 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-01-27T13:58:33Z (GMT) No. of bitstreams: 1 saviodamatomendes.pdf: 828811 bytes, checksum: da0b9c008f1c08b673e1d0adac1d9c84 (MD5) / Made available in DSpace on 2016-01-27T13:58:33Z (GMT). No. of bitstreams: 1 saviodamatomendes.pdf: 828811 bytes, checksum: da0b9c008f1c08b673e1d0adac1d9c84 (MD5) Previous issue date: 2014-03-27 / O que se propõe neste estudo é investigar os procedimentos que em uma obra literária levam ao efeito de ―Fora na linguagem‖. O que é esse Fora? Que gama de efeitos produz? Quais os procedimentos para fazê-lo existir em uma obra de arte, na literatura em particular? Eis algumas das questões que nos interessam. Para desenvolver tal procura em busca do Fora, utilizaremos como suporte e corpus teórico autores que seguiram a trilha do Fora na linguagem, tais como Roland Barthes, Maurice Blanchot, Gilles Deleuze, Pierre-Félix Guattari, Tatiana Salem Levy, dentre outros. Será a partir de cinco obras previamente selecionadas que exploraremos alguns dos procedimentos que levam ao Fora, assim como seu conceito aplicado à literatura: ―A Terceira Margem do Rio‖ e ―Meu Tio Iauaretê‖, de Guimarães Rosa; Mar Paraguayo, de Wilson Bueno; Bodenlos: uma autobiografia filosófica, de Vilém Flusser e Bartleby, o escrivão, Herman Melville. Nosso objetivo não será analisar tais obras, mas, a partir delas, observar alguns dos procedimentos que levam ao Fora. Portanto, tomaremos delas apenas os recortes necessários. Falaremos do que força o pensamento a pensar, do que antecede o pensar. Falaremos do Fora e do plano de imanência; dos corpos sem órgãos; dos devires moleculares e molares. Falaremos de linhas; pontos, encontros, fugas; máquinas; superfície de registro; produção, processo; fluxos e rupturas. Falaremos de limiares; entremeios; gradientes; fragmentações; linhas e margens que se desmancham, desdobram, invaginam, explodem; intensidades e potências; territorialização e desterritorialização. / What is proposed in this study is to investigate the procedures in a literary work lead to the effect of "Out in the language." What is this out? Range of effects that produce? What procedures exist to make it into a work of art, literature in particular? Here are some of the issues that concern us. To develop such a search to search out , we use as support and theoretical corpus authors who followed the trail out of the language , such as Roland Barthes , Maurice Blanchot , Gilles Deleuze , Félix Guattari Pierre - Tatiana Salem Levy , among others . Will be from five previously selected works will explore some of the procedures that lead to out , as well as its concept applied to literature : " The Third Bank of the River " and " My Uncle Iauaretê " , Guimarães Rosa , Mar Paraguayo , Wilson Bueno , Bodenlos : a philosophical autobiography, Flusser and Bartleby , the scribe Herman Melville . Our goal is not to analyze such works , but from them , watching some of the procedures that lead to out . Therefore , we will take them only the necessary cutouts . Talk about what force thought to think , from the foregoing thinking . We will speak out and the plane of immanence ; bodies without organs , the molecular and molar becomings . We will talk about lines , points , meetings , trails , machinery, surface registration , production , process, flows and ruptures . Speak of thresholds ; inset ; gradients ; fragmentation ; lines and edges that crumble , unfold, invaginate , explode , intensities and powers ; territorialization and deterritorialization.
3

Construction de liens entre algorithmique et logique par du calcul à temps infini / From algorithmics to logic through infinite time computations

Ouazzani, Sabrina 02 December 2016 (has links)
Cette thèse s'inscrit dans le contexte du calcul en temps infini. Par cette désignation, nous faisons référence au temps indicé par des ordinaux, ces derniers possédant de bonnes propriétés pour ``compter''en leur long. En 2000, le modèle des machines de Turing à temps infini fut proposé par Hamkins et Lewis. Ce modèle généralise le processus de calcul des machines de Turing aux étapes de temps représentées par des ordinaux. Dans ce modèle de calcul, les étapes sont indicées par des ordinaux dénombrables, bien que le ruban soit toujours indicé par des entiers naturels. Les entrées du modèle sont donc les suites infinies de lettres. Un certain nombre de comportements nouveaux et étonnants apparaissent avec ces machines. Dans notre thèse, nous nous intéressons à certains de ces comportements.Naturellement, plus les temps de calcul sont longs, plus le modèle est puissant, et plus il devient possible de décider de nouveaux ensembles.À partir d’ordinaux assez grands, de nouvelles propriétés structurelles apparaissent également. L'une d'entre elles est l'existence de brèches dans les temps possibles d'arrêts de programmes. Lorsque ces brèches furent découvertes, de premiers liens entre elles et le caractère admissible des ordinaux qui les commencent furent établis. Notre approche utilise l'algorithmique pour préciser les liens entre les propriétés logiques des ordinaux et les propriétés calculatoires de ces machines à temps infini.Plus précisément, grâce à des des algorithmes spécifiques, nous découvrons et prouvons de nouvelles propriétés sur ces brèches,amenant à une meilleure compréhension de leur structure. Nous montrons notamment que les brèches peuvent être de toutes les tailles (limites) écrivables, qu'il en existe même de taille au moins aussi grande que leur ordinal de début. Jusqu’à la première brèche ayant cette caractéristique, la structure des brèches est assez proche de celle des ordinaux : elles apparaissent en ordre croissant en fonction de leur taille. Nous montrons également que jusqu'à cette brèche spéciale, si les ordinaux admissibles sont exactement les ordinaux débutant les brèches, au-dessus, des ordinaux admissibles peuvent apparaître au milieu de très grandes brèches et la structure des brèches devient désordonnée. / This thesis is centred on the study of infinite time computations. Infinite time here means having a time axis indexed by ordinals — the ordinals are convenient objects along which we can count. The infinite time Turing machine model was introduced by Hamkins and Lewis in 2000. This model generalises the Turing machine computation model to ordinal time. In this model, stages are indexed by (countable) ordinals, even though the tape is indexed by the integers as in the classical model. This model can thus now have infinite strings as input. The main focus of this thesis is the study of some of the new and surprising behaviours that these machines exhibit. Naturally, the longer, i.e., the greater ordinal, the computations run, the more powerful the model is, i.e. it computes/recognizes more sets. If the computations run beyond certain ordinal times, new structural properties also appear. One of these properties is the existence of gaps in the halting times of the machines. When these gaps had been discovered, some first links had been established between these gaps and the admissible character of the ordinals starting them. Our approach uses algorithmics as a mean to emphasize the links between the logical properties of the ordinals involved and the computational properties of the infinite time Turing machines. Moreover, thanks to some specific algorithms, we discover and prove new properties of these gaps, leading to a better understanding of their structure. We show in particular that gaps can have precisely every possible writable ordinal size and that there are gaps whose length is greater or equal than their starting ordinal point. Until the first of such a gap, the gaps appear in increasing sizes. We also show that even if, before this special gap, admissible ordinals only appear at the beginning of gaps, the gaps structure becomes quite disordered beyond that point, with admissible ordinals appearing not only at the beginning but also inside some (huge) gaps.

Page generated in 0.0258 seconds