Spelling suggestions: "subject:"brought"" "subject:"drought""
1 |
The Controlled Diffusion Solidification Process: Fundamentals and PrinciplesSymeonidis, Kimon 29 April 2009 (has links)
Aluminum based alloys can be broadly classified into two groups: casting alloys and wrought alloys. Wrought Al-based alloys exhibit superior physical and mechanical properties compared to the conventional shaped casting alloys. The wrought alloys cannot be cast into near net shapes, because they develop hot tears or hot cracks during the solidification process. For this reason these alloys are cast into ingots and are subsequently brought to final shape by mechanical processes like rolling, extrusion, drawing and forging. Invariably these processes significantly increase the cost of the final part up to 50%, and have restrained the application of the wrought alloys in applications where the cost is not a major factor. The CDS (Controlled Diffusion Solidification) is a novel process that bypasses the intermediate steps by casting the wrought alloy directly into final shape, free of hot tears, and eliminating additional deformation steps. The CDS process follows a different route from conventional casting methods. In CDS, two liquid metals of predetermined composition and temperature are mixed producing a globular microstructure instead of a dendritic one. The nondendritic microstructure minimizes the hot- tearing tendency and makes the wrought alloys more suitable to casting operations. The underlying principles and mechanisms of the CDS process have been established through both experimental work and the development of a mathematical model. The operating window of the process has been defined, and guidelines are proposed to enable application of the CDS process to various alloy systems. The reduction of the hot-tearing tendency in Al wrought alloys was experimentally verified.
|
2 |
Assessment procedures for structural wrought ironO'Sullivan, Matthew January 2013 (has links)
The main objective of this research project was to develop a new methodology for the assessment of wrought iron structures using a more informed knowledge of the material.A database of tensile test data for wrought iron across the range of all types of structural elements was compiled and analysed to establish the characteristic yield strength for comparison with the value of 220N/mm2 quoted by the UK Highway Standard BD21. It was found that the characteristic yield strength of bar iron is 151N/mm2 and that of plate iron is 187N/mm2.Bending tests of wrought iron beams were conducted to investigate the potential for brittle fracture under static loads, which was observed, and further investigated by conducting Charpy impact tests, where it was found the that ductile to brittle transition temperature of the metal lies in the range 20 to 80oC, whereas that of mild steel, is typically in the range -30 to 10 oC.A new assessment method was proposed that incorporates a 'quality factor' and a 'component significance factor' into the definition of design yield strength. Comparative studies using the proposed method and the existing method were conducted on a trussed highway bridge, a long span iron roof to a railway station and the Clifton Suspension Bridge. The newly obtained lower values of characteristic yield strength tend to dominate the final design strength value of a component, but this may be improved by the expansion of the database. Furthermore, the inclusion of the quality and significance factors offset this effect and their inclusion was validated by proving that a safe yet not overly conservative design yield strength may be established by application of the proposed method.
|
3 |
Corrosion fatigue behaviour of 5083-H111 and 6061-T651 aluminium alloy weldsMutombo, Faustin Kalenda 25 June 2012 (has links)
In addition to being one of the highest strength non-heat treatable aluminium alloys, magnesium-alloyed wrought aluminium 5083 displays excellent corrosion resistance and good weldability. Aluminium alloy 6061, alloyed with magnesium and silicon, displays high strength, excellent formability, adequate weldability and good corrosion resistance. These aluminium alloys find application in the ship building and transport industries where 5083 is often joined to 6061 to produce welded structures such as complex I-beams and semi-hollow or hollow channels. This project aimed at characterizing the hardness, tensile properties, corrosion behaviour and fatigue properties (in air and in a 3.5% NaCl solution) of aluminium 5083 and 6061 in the as-received and welded conditions. Plates of 5083-H111 and 6061-T651 aluminium, prepared with double-V or square butt joint preparations, were joined using semi-automatic or fully automatic pulsed gas metal arc welding (GMAW). The pulsed GMAW process allows close control over the welding arc and facilitates the use of lower average heat inputs, thereby improving the bead appearance and mechanical properties. During this investigation, three filler wires were evaluated, namely magnesium-alloyed ER5183 and ER5356 aluminium, and silicon-alloyed ER4043. Hardness measurements revealed a decrease in hardness in the weld metal of the 5083-H111 welds. Dressed welds failed in the weld metal during transverse tensile testing, whereas undressed (as-welded) specimens failed at the weld toe or weld root due to the stress concentration introduced by the weld geometry. Significant softening, attributed to the partial dissolution and coarsening of strengthening precipitates and recrystallization during welding, was observed in the heat-affected zones of the 6061-T651 welds. During tensile testing, failure occurred in the heat-affected zone of all 6061 welds. Welding reduced the room temperature fatigue life of all specimens tested. In the 5083 welds, fatigue cracks initiated preferentially at gas pores, lack-of-fusion type defects and second phase particles in dressed welds, and at the stress concentration presented by the weld toes or the weld root in undressed welds. In 6061 welds, failure occurred preferentially in the softened heat-affected zone of the welds. As a result of improved control over the weld profile and a lower incidence of weld defects, fully automatic welds consistently outperformed semi-automatic welds during fatigue testing. The presence of a corrosive environment (a 3.5% NaCl solution in this investigation) during fatigue testing reduced the fatigue properties of all the samples tested. Corrosion pits formed preferentially at second phase particles or weld defects, and reduced the overall fatigue life by accelerating fatigue crack initiation. Copyright / Dissertation (MSc)--University of Pretoria, 2012. / Materials Science and Metallurgical Engineering / unrestricted
|
4 |
Effect of the Processing Route on the Localized Corrosion Susceptibility of Al Alloy AA7050 in Saline SolutionsFeenstra, Darren R. January 2016 (has links)
Experiments were conducted to characterize and compare the localized corrosion susceptibility of the granular microstructure of aluminum (Al) alloy AA7050 in the peak aged T6 condition cast by the novel controlled diffusion solidification (CDS) process against the conventional wrought plate counterpart. CDS is a casting technique that involves mixing two precursor melts at specific temperatures and compositions before solidification. This process avoids the problem of hot tearing by causing copious nucleation of the solid phase within the melt before solidification, reducing the amount of solute segregation and, thus dendritic growth creating a consistently equiaxed microstructure.
The effect of the CDS processing route on its relative localized corrosion susceptibility was elucidated by making links between the microstructure heterogeneities and the localized corrosion susceptibility as evaluated in aqueous saline solutions. Microstructures were characterized and compared with the use of the following techniques:
1. Scanning electron microscopy (SEM) to characterize grain size, shape and distribution.
2. Electron backscattered diffraction (EBSD) in SEM mode to characterize grain misorientation and the associated distribution.
3. Auger electron spectroscopy (AES) to characterize the composition of the grain boundary region including the precipitate free zone (PFZ) and the grain boundary precipitates.
4. Atom probe tomography (APT) to define the size, distribution, and composition of the strengthening matrix precipitates along with the grain boundary region (PFZ and grain boundary precipitates).
Electrochemical experiments were conducted to characterize and compare the localized corrosion susceptibility of the two materials (CDS and conventional wrought) exhibited in aqueous saline solutions. Specific techniques include the following:
i. Potentiodynamic polarization measurements of mechanically-abraded surfaces to determine the corrosion potential (Ecorr) and breakdown potential (Eb).
ii. Potentiostatic anodic polarization of mechanically-abraded surfaces to observe the mode and extent of localized corrosion.
iii. Open-circuit potential (OCP) measurements of fracture surfaces to determine the OCP of a surface with a significantly higher grain boundary area fraction relative to the bulk material.
iv. Cyclic acidified salt (sodium chloride (NaCl)) fog testing (ASTM-G85-Annex 2) to validate the relative localized corrosion susceptibility under more realistic atmospheric corrosion exposure conductions.
The CDS casting technique resulted in an entirely equiaxed microstructure. The microstructure was isotropic with an average grain size of 25±1 µm and an aspect ratio of around 1. This grain structure was in stark contrast with the wrought material, which exhibited a granular structure elongated along the rolling direction. The wrought material had a cord length of 56±3.2 µm in the rolling direction, 51±3 µm in the traverse direction and 13.3±1.6 µm in the short traverse direction. The wrought material had an aspect ratio of around 4 in the longitudinal plane (LS), 2.6 in the short transverse plane (ST) and 1.2 in the rolling plane (LT). AES and APT revealed that the CDS material had a higher amount of copper (Cu) segregation into the grain boundary precipitates. Electrochemical testing showed that the wrought material had a Eb of −750 ± 3 mV while the CDS had a higher Eb of −697 ± 4 mV. The Cu segregation into the grain boundary precipitates yielded more electrochemically active grain boundaries, as revealed by the OCP measurements. Despite this fact, localized corrosion of the CDS material initiated as pitting and propagated as a mixed mode involving intergranular corrosion (IGC) and pitting. The localized corrosion mode exhibited by the wrought material was purely IGC: both in initiation and propagation. The difference in corrosion mode was found to be due to the differences in the size of the Fe-based IMPs and the distribution of the Cu secondary phase precipitates: The CDS had large Fe IMP trapped at the grain boundary triple points and clustering of Cu secondary phase precipitates. Conversely, the wrought material had finely dispersed Fe IMP of significantly smaller size than those found in the CDS, and its Cu secondary phase precipitates are evenly distributed along the grain boundaries. These differences in precipitate distribution enhanced susceptibility for pitting in the CDS and reduced the driving force for IGC. The propagation of localized corrosion was markedly reduced in the CDS material: about half of that exhibited by the wrought material (under identical exposure conditions). Cyclic acidified salt fog testing revealed industry acceptable levels of localized corrosion susceptibility in-line with the benchmark alloys that are currently used in automotive applications. / Thesis / Master of Applied Science (MASc)
|
5 |
Material Characterization and Structural Response of Historic Truss BridgesKelton, Sean L 01 January 2010 (has links) (PDF)
Historic truss bridges are examined in this thesis through material characterization of wrought iron and structural evaluation of an early 20th century pony truss bridge. The mechanical properties of wrought iron from six 19th century truss bridges were evaluated through mechanical testing that includes hardness and tension tests. The main findings of this work are: 1) That hardness is a poor predictor of yield and ultimate stress but has some ability in screening iron for iron with low ductility, 2) there is a statistically significant difference in the distribution of yield and ultimate stresses between material samples from different bridges, and 3) that a size effect is present in the material that results in lower yield and ultimate stresses for larger members. Load tests were conducted on an early 20th century pony truss bridge where member axial strains and truss deflections are measured, which were then simulated in computer models. The key observations are: 1) that connection type between truss members has little effect on computer model results, 2) that a significant difference was observed between measured axial forces and those predicted in the computer models for certain members, and 3) that although the bridge response is best modeled with a pin-roller support condition, compressive forces measured in the bottom chord members from temperature change indicate the supports have some lateral resistance, thus are not a true pin-roller.
|
6 |
Novel Processing Methods and Mechanisms to Control the Cast Microstructure in Al Based Alloys - 390 and Wrought AlloysSaha, Deepak 14 April 2005 (has links)
The enactement of the Energy Policy and conservation Act of 1975, led to a paradigm shift in material selection and design in the automotive industry. The net effect was an increased focus by the automotive industry toward the use of light metals leading for the reduction of weight and hence, the dependence of imported oil. Increasing use of aluminum was a transition in that direction. However, raw aluminum on an average is 1.5 - 2 times as expensive as steel. Near net shape manufacturing processes (Die casting, Thixo-forging, etc) provided the much needed competitive advantage vis-à-vis steel / iron parts by permitting the manufacturing of Al components. Semi solid processing involves the net shape manufacturing of alloys in a two phase region (liquid + solid). The reduced turbulence (during casting), less entrapped gases and lower operating temperatures (processes below the liquidus) make semi solid processing ideal for the manufacturing of high integrity Al parts. Traditionally, semi solid processing involved the heating of billets to a two phase region (called Thixcasting). Rheocasting is a new semi solid processing technique wherein the alloy is cooled from a liquid state (a combination of controlled heat / nucleation and growth phenomena) to yield structures similar to the Thixocasting process. Rheocasting or Slurry-On-Demand is in its early stages of development (the first industrial prototype of rheocasting was invented in the late 1990's) and forms the central point of interest in this work. Much research is underway around the globe to understand the controlling mechanism as well as the structure - property relationships in rheocast parts, primarily limited to the hypoeutectic Al-Si alloys (less than 12.6% Si). This work is dedicated in the development of novel methods for the rheocasting of hypereutectic Al-Si alloys (greater than 12.6% Si) and Al based wrought alloys (alloys with Cu, Zn, Mg and Si as alloying elements). The thesis presents the problems associated with microstructure control of hypereutectic Al-Si (primary Si coarsening and accelerated growth) and Al based wrought alloys (dendritic structures and hot tearing) with currently available technologies. Novel processing techniques are presented for the casting of hypereutectic Al-Si alloys and Al based wrought alloys with a combination of industrial trials and a through analysis of the underlying mechanisms.
|
7 |
Microstructure/property relationships in three high strength wrought magnesium alloys based on elektron 675Twier, Abdulhamied Moktar January 2011 (has links)
The object of the present investigation has been to relate the mechanical properties of a high strength Mg-Y-Gd alloy to alloy composition, extrusion parameters and microstructure. Three alloys with various Y: Gd ratios, of similar total solute content (at %) to Elektron 675, have been investigated in this study:9122: Mg – 6.5 wt % Y – 7.6 wt % Gd – 0.4 wt % Zr 9123: Mg – 8.2 wt % Y – 4.8 wt % Gd – 0.4 wt % Zr9124: Mg – 2.6 wt % Y – 13.1 wt % Gd – 0.4 wt % ZrThe three alloys were extruded at 425 and 475 °C with extrusion ratio 17: 1 to give two samples from each alloy, group a and b. Alloy 9122 was also extruded at 460 and 500 °C with extrusion ratio 10: 1 to give another two samples c and d. The as-cast microstructure of the three alloys comprised equiaxed α-magnesium grains and regions of eutectic decorating some grain boundaries formed during solidification of the ingot. Variation of extrusion parameters has resulted in a dispersion of different volume fractions of second phase particles in different groups of samples. The chemistry of second phase particles was determined by in-situ bulk energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD); magnesium yttrium was identified for near-equiaxed particles and yttrium hydride was proposed as a possible identification for cuboids. The composition of these compounds varied with variation of Y: Gd in the three alloys. Variation of extrusion ratio and extrusion temperature had a clear effect on the evolution of the extruded microstructure and the development of crystallographic texture as characterized by optical microscopy, electron backscattered diffraction (EBSD) and inverse pole figures. The microstructure of the extruded samples was refined during extrusion through dynamic recrystallization (DRX). Samples of groups a, b and c exhibited a microstructure in which bands of fine, equiaxed grains in association with stringers of second phase particles (running along the extrusion direction) were formed between bands of coarse, equiaxed grains. Sample d contained only small volume fraction of second phase particles; only a few alternating bands were formed and considerable grain growth occurred. A random texture was developed during extrusion in samples of groups a, b and c; a wide spread of orientations accompanied by a (new) previously unreported texture component in which basal poles of some grains are aligned nearly parallel to the extrusion direction was developed. The new texture component was weak in sample c and entirely suppressed in sample d. The asymmetry in tensile and compressive yield stress commonly associated with magnesium extrusions was nearly eliminated in samples of group a and b. The new basal texture component was likely to be a result of nucleation of DRX on sites rotating into this orientation. This is proposed to be a result of deformation in those regions in grains was accomodated by basal, prismatic and pyramidal slip. The grains nucleated in this orientation appear to have developed a form of preferred growth which led to strengthening of this new component following solution treatment. The effect of varying solute content (Y & Gd) and different ageing temperatures 150, 200, 250 and 300 °C (T5 & T6) on the ageing response and precipitation reaction were investigated using hardness measurements and transmission electron microscopy (TEM). Alloy 9122 showed the highest ageing response of the three alloys at 150, 200 and 250 °C (T5 & T6); specimens aged in the T5 gave higher hardness than the T6 treatment, a contribution of fine grain size. The three alloys did not respond to ageing at 300 °C. The precipitation reactions that occurred in alloy 9122 (at under, peak and overageing) and alloys 9123 and 9124 (at peak ageing) at 250 °C have been characterized. The precipitation sequence observed in sample 9122a can be described as: . The microstructure of peak aged specimens of alloys 9122 and 9124 were similar; both contained a homogeneous dispersion of precipitates and some metastable precipitates. Alloy 9123 contained only a homogeneous dispersion of precipitates and remnants of precipitates and no precipitates. The enhanced thermal stability of and phases are most likely responsible for the superior elevated temperature properties of Elektron 675. The effect of varying solute content (Y & Gd) and extrusion parameters on the mechanical properties were determined using tensile testing. Alloys 9122 and 9124 exhibited higher 0.2 % proof stress and UTS than alloy 9123 and alloy 9122 was the hardest alloy. Alloy 9122 exhibited the worst ductiliy (T5 and T6) among 9123 and 9124, and this was attributed to the higher volume fraction of second phase particles. The ductility of samples a, b and c in the as-extruded & T5 conditions, particularly in the transverse direction, was limited by stringers of second phase particles, whereas ductility and failure in sample d was governed by grain size and texture. The ductility and failure of all samples aged in the T6 treatment, irrespective of the extrusion history, was controlled by texture and grain size rather than stringers of second phase particles.
|
8 |
Fused metallic slurry coatings for improving the oxidation resistance of wrought alloysSegura-Cedillo, Ismael January 2011 (has links)
The aim of this project was to investigate the potential of fused-slurry coatings for improving the oxidation resistance of wrought alloys. Slurry-aluminised coatings were deposited on Alloy 800H (Fe-33Ni-20Cr), Alloy HCM12A (Fe-12Cr-2W), Alloy 214 (Ni-16Cr-4Al-3Fe), Fe-27Cr-4Al and Fe-14Cr-4Al alloys. The slurry contained a cellulose-based binder in an aqueous carrier and spherical aluminium powder, with a particle size below 20 microns. The slurries were applied with a paint-brush, dried in air and heat treated in either hydrogen or argon at temperatures between 700 and 1150C. The slurries were characterised by thermogravimetry, differential scanning calorimetry and viscometry. The coatings were characterised by optical microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction and Vickers hardness measurements. The oxidation resistance of selected slurry-coated specimens was assessed in air at 1000 and 1100C in tests lasting up to 1000 hours.Slurry-aluminising was found to be a simple, effective way of forming protective coatings that were similar in composition and microstructure to chemical vapour deposits. However, it was difficult to control the amount of slurry applied to the substrate and produce coatings of uniform thickness.The coatings on Alloy HCM12A and the Fe-Cr-Al alloys contained cracks in the brittle FeAl phase due to tensile stresses arising from differences in the thermal expansion coefficients of the substrates and the coatings. Rapid interdiffusion between the coatings and the ferritic substrates resulted in the appearance of Kirkendall voids.Coatings on Alloy 214 required a two-stage heat treatment to convert the brittle δ-Ni2Al3 to β-NiAl. Cracking along the coating/substrate interface was prevented by limiting the coating thickness to a maximum of 250 microns. During oxidation at 1100C, the β-NiAl was converted to γ'-Ni3Al. After 1000 h, the centre of the coating consisted chiefly of γ'-Ni3Al and bands of austenite (γ-Ni) were present at the inner and outer edges of the coating. The aluminium content at the coated surface was higher than the original aluminium content of the alloy, the protective alumina scale was improved and the oxidation life of the substrate was extended. An additional life of 1250 h at 1100C is estimated from a slurry coating before the aluminium content returns to that of the original alloy (4%), providing a potential improvement in oxidation resistance.Microstructural changes such as grain growth, sensitisation and formation of aluminium nitride particles near the coating/substrate interface, were detected in the alloy substrates after forming the slurry coatings. However, these microstructural changes did not detract from the good performance of the coatings during oxidation tests at 1100C.The work in this study has demonstrated a low-cost method of coating high-temperature alloys providing coatings with microstructures, densities and modes of degradation similar to those obtained by other coating methods. The coatings are potentially applicable to a wide range of high-temperature substrates.
|
9 |
Semisolid Die Casting of Wrought A6061 Aluminium AlloyKini, Anoop Raghunath January 2013 (has links) (PDF)
The mechanical properties achieved with high performance wrought aluminium alloys are
superior to cast aluminum alloys. To obtain an intricate shaped component, wrought alloys are commonly subjected to forging followed by subsequent machining operation in the automobile industry. As machining of such high strength wrought aluminium alloys adds to cost, productivity gets affected.
Shortening the process by near net shaped casting would tremendously enhance productivity. However, casting of such alloys frequently encounter hot tear defect. Therefore, circumventing hot tear to
successfully die cast near net shaped wrought alloy components is industrially relevant. A recent advanced casting process, namely ‘Semisolid Die casting’, is proposed as a likely solution.
Hot tearing originates due to lack of liquid flow in the inter-dendritic region. To reduce hot tear susceptibility, fine and non-dendritic grain structure is targeted, amenable for processing by semisolid
route. For semisolid processing an adequate freezing range for processing is required. Accordingly A6061 wrought alloy whose composition is tuned with higher silicon and magnesium content within the grade limits, is chosen for the study.
With the objective of obtaining fine and non-dendritic microstructured billets, electromagnetic stirring (EMS) and cooling slope (CS) methods are employed. On conducting a parametric study with
EMS, a finest possible primary α-Al grain size of about 70 μm is obtained at low stirring time at stirring
current levels of 175 A and 350 A, with the addition of grain refiner. CS, on the other hand, rendered a grain of 60 μm at a slope length of 300 mm at a slope angle of 45° with grain refiner addition. Of the two methods, CS billets are chosen for subsequent induction heating. A 3-step induction heating cycle has been devised to attain a temperature of 641°C in the billet on the basis of factors including coherency
point, viscosity of the slurry and solid fraction sensitivity with temperature. The billet microstructure is found to be homogenous throughout after quenching in water. The characterization of phase along
primary α-Al grain boundary and its composition analysis is done by SEM and EPMA respectively, after billet casting as well as induction heating. In addition, the bulk hardness is determined in BHN.
The induction heated billets are semisolid die cast to produce an engine connecting rod used in automobiles. The microstructure is characterized at various locations, and is found to consist of smooth
α-Al grains in a background matrix of fine grains formed due to secondary solidification. The component
hardness is found to be 66 BHN comparable with A6061 alloy under T4 heat treated condition. X-ray radiography does not confirm presence of surface hot tear, which is the normal defect associated with casting of wrought aluminium alloys. No defects are observed along the constant cross-sectional area of the connecting rod, suggesting that the processing could be suitable for semisolid extrusion.
|
10 |
Influence of atmospheric moisture on the corrosion of chloride-contaminated wrought ironLewis, Mark R. T. January 2009 (has links)
No description available.
|
Page generated in 0.0331 seconds