• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 1
  • Tagged with
  • 15
  • 12
  • 10
  • 10
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Vliv plánovaného zařízení KIC Odpady (ZEVO) v Karviné na postoje obyvatel a síla vlivu NIMBY efektu / The influence of planned project KIC Odpady (WtE) in Karviná city on residents' attitude and the strength of NIMBY effect

Ryba, Jakub January 2014 (has links)
Although there is, in general, a significant level of support of projects related to use of renewable resources, in fact realization of the specific projects usually meets with negative attitude of local residents. This negative attitude is often called as NIMBY ("not in my backyard") effect without further research of particular causes. Therefore, in the theoretical part of this diploma thesis NIMBY effect is defined, as well as various attitudes to its interpretation in literature and also the effect of various compensation on changing residents' attitude. In the practical part, this diploma thesis analyses residents' attitude, the existence and strength of NIMBY effect and the effect of compensation on changing residents attitude towards the specific planned project of building WtE in Karviná city (KIC). The results of this analyzation show, that NIMBY effect is detected, but at the same time it is not the main cause of the negative attitude of residents. Moreover, it has been found out, that the offered compensation have not any important influence on the change of residents' attitude.
12

Technical Development of Waste Sector in Sweden: Survey and LifeCycle Environmental Assessment of Emerging Technologies

Uz Zaman, Atiq January 2009 (has links)
Waste can be considered as an urban burden or as a valuable resource depending on how it ismanaged. Different waste treatment technologies are available at present to manage municipal solidwaste (MSW). Various actors are involved to develop waste treatment technology for certain area.The aim of this study is to analyze the driving forces in technical development in waste sector inSweden. The study is also done to identify emerging waste management technology in Sweden.Moreover, a comparative study of existing and emerging technologies is done by Life CycleAssessment (LCA) model. An extensive literature review and pilot questionnaire survey among thewaste management professionals’ is done for the study. LCA model is developed by SimaProsoftware CML2 baseline method is used for identifying environmental burden from the wastetechnologies.Dry composting, Pyrolysis-Gasification (P-G), Plasma-Arc are identified as potential emergingtechnologies for waste management system in Sweden. Technical developments of thesetechnologies are influenced by indigenous people’s behavior, waste characteristics, regulations, healthor environmental impact and global climate change. Comparative LCA model of P-G andIncineration shows that, P-G is a favorable waste treatment technology than Incineration for MSW,especially in acidification, global warming and aquatic eco-toxicity impact categories.
13

Potential for the anaerobic digestion of municipal solid waste (MSW) in the city of Curitiba, Brazil

Remy, Florian January 2018 (has links)
Curitiba is a city of two million inhabitants located in the South of Brazil. It is a pioneer in waste management in the country, and is famous for its programs promoting recycling and organic waste collection. The city is now willing to take waste management one step further by investigating new solutions to treat and recover energy from organic municipal solid waste. This report is the fruit of a collaboration between two departments of the municipality of Curitiba, four local universities, the Swedish environment protection agency and the Royal Institute of Technology – KTH. The purpose of this report is to assess the potential for the development of anaerobic digestion as a solution to treat the organic municipal solid waste generated in Curitiba. The report offers an overview of the current waste treatment and of the main sources of organic waste in Curitiba. The annual amount of organic waste generated in the city is estimated to 144,350 tons, of which 913 tons come from food markets supervised by SMAB, the secretary of food supply. Three different scenarios, corresponding to three ranges of waste sources, have been considered. In the first one, the organic wastes generated by one of the two public markets of Curitiba are treated on-site. In the second one, all the organic wastes from food markets, street markets and popular restaurants are treated together in a medium-scale anaerobic digester. In the third one, all the sources of organic municipal solid waste identified in Curitiba are considered, including residential, institutional and small commercial waste. The annual methane production is estimated to 5,400 m3, 86,000 m3 and 12,600,000 m3 respectively for the three scenarios. In the last two scenarios, the methane could be converted into electricity, resulting in an annual electricity production of 257 MWh and 37,600 MWh. The first scenario does not consider a post-treatment of the digestate remaining at the end of the digestion. Between 46 and 50 tons of digestate could be used as a liquid fertilizer on-site and the surplus could be sold. For the two other scenarios, the digestate would be dewatered and composted to be sold as a dry fertilizer. The dry fertilizer production is estimated to 386 tons and 63,000 tons respectively every year. Each of the scenario considered would be financially viable, with a discounted payback period varying from 8 months for the small-scale scenario, to over 15 years for the second scenario. The third scenario would be the most lucrative, with a net present value of about 150 million reals. / Curitiba i Södra Brasilien är en stad med två miljoner invånare som har positionerat sig som pionjär inom avfallshantering. Staden är känd i landet med sin främjande strategi för återvinning och organisk avfallshantering. Curitiba planerar att undersöka och experimentera med nya metoder för behandling av avfall kombinerad med energiåtervinning från kommunalt organiskt avfall. Denna rapport är resultat av ett samarbete mellan två avdelningar inom Curitibas kommun, fyra lokala universitet, Sveriges miljöskyddsmyndighet och den Kungliga Tekniska Högskolan. Syftet med denna rapport är att utvärdera den potentialen som den anaeroba nedbrytningen har som medel för behandling av det kommunala fasta avfallet som genereras i Curitiba. Rapporten går även igenom hur avfallshanteringen ser ut i staden i dagsläget samt sammanfattar de största källorna för organiskt avfall i Curitiba. Den årliga mängden organiskt avfall som produceras i staden uppskattas till 144 350 ton, varav 913 ton kommer från livsmedelsaktiviteter som övervakas av det brasilianska livsmedelsverket SMAB. Tre olika scenarier representeras i denna rapport och omfattar tre områden av avfallskällor. I det första scenariot behandlas det organiska avfallet som genereras av en av de två köpmarknaderna i Staden direkt på plats. I det andra behandlas allt organiskt avfall från livsmedelsmarknader, gatumarknader och populära restauranger tillsammans i en medelstor anaerob kokare. I det tredje beaktas alla källor till organiskt kommunalt avfall som identifierats i Curitiba, inklusive bostads-, institutionellt och litet kommersiellt avfall. Den årliga metanproduktionen uppskattas till 5 400 m3, 86 000 m3 respektive 12 600 000 m3 för de tre scenarierna. I det andra och tredje scenariot kunde metan omvandlas till el, vilket resulterade i en årlig elproduktion på 257 MWh respektive 37 600 MWh. I det första scenariot anses inte en efterbehandling av digestatet kvar vid slutet av matsmältningen. Mellan 46 och 50 ton digestat kan användas som flytande gödselmedel på plats och överskottet kan säljas. För de två andra scenarierna skulle digestatet avvattnas och komposteras för att senare säljas som torr gödsel vars produktion beräknas uppgå till 386 ton respektive 63 000 ton varje år. Alla tre scenario som presenteras i denna rapport anses vara ekonomiskt genomförbara med en diskonterad återbetalningstid som varierar mellan 8 månader för det första scenariot till över 15 år för det andra scenariot. Det tredje scenariot anses vara det mest lukrativa med ett nuvärde på ca 150 miljoner realer.
14

Pre-feasibility Study of a Waste to Energy Plant in Chisinau, Moldova

Karlsson, Linus, Linderholm Jönsson, Thomas January 2012 (has links)
The thesis outlined in this report has been done as a sub-project in cooperation between the municipalities Borlänge in Sweden and Chisinau in Moldova. The project aimed to explore the region's economic and environmental opportunities for waste incineration with energy recovery, also known as Waste to Energy. At present, the solution to the waste situation is unmonitored landfills with smaller sorting operations. Environmentally, this is a poor solution and although there are plans for change, no specific strategy has been presented. Another important issue is Moldova's dependence on foreign produced energy. The country's energy system is dependent on imported natural gas, and only a small part of the country's electrical energy is produced domestically. What makes the waste to energy so interesting for this region is that it contributes to an improvement in both of these issues by using the waste as fuel to reduce energy dependency. The study has been done without specific waste composition data for the Chisinau region. With this in mind a dynamic model in several steps has been made, designed to obtain new results depending on what waste composition is specified. The results of this study show that implementation of a waste incineration plant in the Chisinau energy system is economically and environmentally feasible, given the current conditions. The proposed plant is designed to annually handle 400,000 tonnes of waste, and would with the assumed waste composition deliver 560 GWh of district heat and 260 GWh of electric energy. This production provides an annual profit of 31.6 M €, which gives a positive net present value after the project amortization. Compared with the city's current solution with landfills and gas turbines, the project also provides a significant environmental improvement. During the plant's design lifetime, greenhouse gas emissions are 53.9%, and only 6.8% with the assumption that only a portion of the carbon content of the waste is of fossil origin.
15

Development Of A Chemical Kinetic Model For A Fluidized-bed Sewage Sludge Gasifier

Champion, Wyatt 01 January 2013 (has links)
As the need for both sustainable energy production and waste minimization increases, the gasification of biomass becomes an increasingly important process. What would otherwise be considered waste can now be used as fuel, and the benefits of volume reduction through gasification are seen in the increased lifespan of landfills. Fluidized-bed gasification is a particularly robust technology, and allows for the conversion of most types of waste biomass. Within a fluidized-bed gasifier, thermal medium (sand) is heated to operating temperature (around 1350°F) and begins to fluidize due to the rapid expansion of air entering the bottom of the reactor. This fluidization allows for excellent heat transfer and contact between gases and solids, and prevents localized "hot spots" within the gasifier, thereby reducing the occurrence of ash agglomeration within the gasifier. Solids enter the middle of the gasifier and are rapidly dried and devolatilized, and the products of this step are subsequently oxidized and then reduced in the remainder of the gasifier. A syngas composed mainly of N2, H2O, CO2, CO, CH4, and H2 exits the top of the gasifier. A computer model was developed to predict the syngas composition and flow rate, as well as ash composition and mass flow rate from a fluidized-bed gasifier. A review of the literature was performed to determine the most appropriate modeling approach. A chemical kinetic model was chosen, and developed in MATLAB using the Newton-Raphson method to solve sets of 18 simultaneous equations. These equations account for mass and energy balances throughout the gasifier. The chemical kinetic rate expressions for these reactions were sourced from the literature, and some values modified to better fit the predicted gas composition to literature data.

Page generated in 0.0318 seconds