• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] CO2 REACTIVITY OF MINERAL COALS, BIOMASS AND COKES / [pt] REATIVIDADE AO CO2 DE CARVÕES MINERAIS DE BIOMASSAS E COQUES

JERSON EDWIN ALVARADO QUINTANILLA 08 March 2013 (has links)
[pt] O presente trabalho apresenta a comparação da reatividade ao CO2 de Carvões Minerais, de Biomassas e Coques. Os ensaios realizados foram feitos empregando pastilhas de forma cilíndrica, tanto para materiais sem desvolatilização e desvolatilizados e sob uma temperatura de 1100 graus Celsius. É apresentado um breve histórico das matérias primas carbonosas e seus comportamentos com respeito à reatividade. Os experimentos de reatividade foram realizados em Forno elétrico tubular e em Termobalança, enquanto que as análises da porosidade foram realizadas no MEV. Os resultados mostraram que o material carbonoso que apresentou menor reatividade foi o Coque Verde de Petróleo (CVP), 65,89 por cento e 46,77 por cento, para amostras sem desvolatilização e desvolatilizadas, respectivamente. Por outro lado o Carvão Vegetal apresentou a maior reatividade, 98,05 por cento e 95,96 por cento, também para amostras sem desvolatilização e desvolatilizadas, respectivamente. No caso da nova biomassa empregada, o Carvão de Capim Elefante, a reatividade foi superior ao CVP, similar ao Coque Metalúrgico, mas muito distante do Carvão Vegetal. Com relação à porosidade, os materiais depois de reagirem com o CO2, tornaram-se mais porosos que as amostras virgens. Observou-se também em aumentos de 1800x, alguns materiais apresentaram a tendência de se aglomera formando pequenas esferas sobre a superfície das partículas. Na análise TGA, mediu-se para o Carvão Vegetal, a maior perda de peso em presença do CO2 (maior reatividade) e ainda, que Coque Verde de Petróleo sofreu a menor perda de peso (menor reatividade). O modelo cinético empregado, modelo de reação contínua, teve boa correlação, perto de 99 por cento, para os diferentes tipos de materiais. As energias de ativação aparente das biomassas foram menores que as determinadas para os carvões e coques. / [en] This work presents comparisons between the reactivity with CO2, measured at 1100 Celsius degrees, for Coals, Biomass and Cokes, shaped as cylindrical pellets, tested without volatilization and devolatilized. A brief historical review is presented for these carbonaceous materials together with their reactivity behavior. The experimental runs for the materials were made in a Tubular Furnace, Thermogravimetric Balance and the characterizations, as porosity, using a SEM, following the experimental procedure and parameters suggested in the bibliography. The obtained results showed that the carbonaceous material with the lowest reactivity was the Green Petroleum Coke, 65.89 per cent and 46.77 per cent , for samples without devolatilization and devolatilizated, respectively. The Charcoal, on the other hand rated 98.05 per cent and 95.96 per cent, also for samples without devolatilization and devolatilizated, respectively. In the case of new biomass used, Elephant Grass, its reactivity was superior to that of the Green Petroleum Coke, similar to the Metallurgical Coke but far greater than the Charcoal. As for the porosity, the devolatilized materials, after the reaction with CO2 became more porous than the virgin material, presenting also residues that tended to clump together forming small beads on the material’s surface, these were observed with increases at 1800x. The analyses TGA confirmed that Charcoal, submitted to CO2, lost more weight than the other tested carbonaceous materials and the GPC lost the least. The kinetic model, continuous reaction, showed good correlation, about 99 per cent , for every material. The apparent activation energies for the biomasses showed lower values than for the coals and cokes.
2

[en] THE REDUCTION KINETICS KINETICS OF SELF-REDUCING BRIQUETTES / [pt] CONTRIBUIÇÃO AO ESTUDO DA CINÉTICA DE REDUÇÃO DE BRIQUETES AUTO-REDUTORES

JOSE HENRIQUE NOLDIN JUNIOR 26 June 2003 (has links)
[pt] O presente trabalho, apresenta uma análise do impacto das variáveis, temperatura, tipo de atmosfera e composição dos materiais ferrosos e carbonosos, sobre a cinética da auto- redução, em dois tipos de briquetes auto-redutores, na faixa de temperatura de 1000 à 1300 graus Celsius. É apresentado um breve histórico da ciência de redução dos óxidos de ferro, além das características relevantes dos principais processos de auto-redução e uma análise dos principais trabalhos correlatos disponíveis na literatura, procurando evidenciar os aspectos termodinâmicos e cinéticos destes estudos. São discutidos detalhes do aparato disponível, o procedimento experimental, a caracterização das amostras, e os resultados obtidos. A partir da análise dos resultados, foi determinando a energia de ativação aparente (E0) igual à 177,10 kJ/mol e o fator de freqüência pré-exponencial da equação de Arrehnius (Constante da taxa 0) igual à 0,97x10-3 s-1. Foi observado que aumentos na temperatura de teste, diminuição na vazão de N2 e uso de atmosfera de CO, melhoraram significativamente a cinética de redução dos briquetes auto- redutores, aumentando os graus de conversão obtidos. Os resultados confirmaram que a reação de Boudouard se apresenta como a etapa controladora do processo até 1200 graus Celsius C, quando o controle passa a ser misto, sofrendo também a influência da reação química de redução dos óxidos de ferro. A importância destes resultados e observações experimentais para o desenvolvimento e projeto dos processos emergentes de auto-redução são destacados. / [en] The present work, analyzes the impact of the key variables, temperature, reduction atmosphere and composition of the ferrous and carbonaceous materials, on the kinetics of self- reducing briquettes, for two types of samples, over the temperature range 1000 - 1300 Celsius Degree. A brief history of the ironmaking science is presented, covering the most relevant features of the main self-reduction processes and a survey of the main published researches on the same subject relating to thermodynamic and kinetic aspects. The experimental procedure, details of the apparatus used, the experimental parameters, characterization of the samples and the results are described. Based on the results obtained, the kinetic parameters were evaluated determining the apparent activation energy (E0) as 177,10 kJ/mol and the pre-exponential frequency factor of the Arrehnius equation (ê0) as 0,97x10-3 s-1. It is observed that, increasing the temperature, decreasing the inert gas flow (N2) and using CO atmosphere, improves significantly the kinetics of reduction of self-reducing briquettes, raising the rate of iron oxide reduction. The results confirm that the Boudouard reaction is the rate limiting step of the overall reaction, up to 1200 Celsius Degree, when a mixed control starts, where the influence of the iron oxides reduction shall be also considered. The significance of this experimental results and observations to the design and the development of an innovative self-reduction smelting process are highlighted.
3

Methane and Solid Carbon Based Solid Oxide Fuel Cells

Chien, Chang-Yin 07 April 2011 (has links)
No description available.
4

Energy transfer and chemistry of carbon monoxide in vibrational mode non-equilibrium

Essenhigh, Katherine Anne 24 August 2005 (has links)
No description available.
5

Development Of A Chemical Kinetic Model For A Fluidized-bed Sewage Sludge Gasifier

Champion, Wyatt 01 January 2013 (has links)
As the need for both sustainable energy production and waste minimization increases, the gasification of biomass becomes an increasingly important process. What would otherwise be considered waste can now be used as fuel, and the benefits of volume reduction through gasification are seen in the increased lifespan of landfills. Fluidized-bed gasification is a particularly robust technology, and allows for the conversion of most types of waste biomass. Within a fluidized-bed gasifier, thermal medium (sand) is heated to operating temperature (around 1350°F) and begins to fluidize due to the rapid expansion of air entering the bottom of the reactor. This fluidization allows for excellent heat transfer and contact between gases and solids, and prevents localized "hot spots" within the gasifier, thereby reducing the occurrence of ash agglomeration within the gasifier. Solids enter the middle of the gasifier and are rapidly dried and devolatilized, and the products of this step are subsequently oxidized and then reduced in the remainder of the gasifier. A syngas composed mainly of N2, H2O, CO2, CO, CH4, and H2 exits the top of the gasifier. A computer model was developed to predict the syngas composition and flow rate, as well as ash composition and mass flow rate from a fluidized-bed gasifier. A review of the literature was performed to determine the most appropriate modeling approach. A chemical kinetic model was chosen, and developed in MATLAB using the Newton-Raphson method to solve sets of 18 simultaneous equations. These equations account for mass and energy balances throughout the gasifier. The chemical kinetic rate expressions for these reactions were sourced from the literature, and some values modified to better fit the predicted gas composition to literature data.

Page generated in 0.0248 seconds