11 |
Utveckling av ett öppet Home Automation-protokoll för användning över IP-nätverk / Development of an open Home Automation protocol for use over IP networksJohnsson, Kim, Turfors, Christoffer, Ericson, Eric January 2010 (has links)
Detta arbete tar upp utvecklingen av ett nytt protokoll för användning inom Home Automation över IP-nätverk, med stor vikt på flexibilitet och enkelhet. Vi valde att utveckla ett nytt protokoll för Home Automation då en granskning av dagens protokoll visar att dessa inte är tillräckligt öppna eller flexibla för att passa alla enheter som används eller alla scenarion som kan uppstå. I våra litteraturstudier samlades information in som skapade grunderna för vårt protokoll och gav oss en större inblick i teknikerna bakom dagens tekniker inom home automation. Detta gav oss även möjlighet att senare jämföra vårt färdiga protokoll med redan existerande protokoll för att se om vi lyckats skapa något som kan användas. Metoden vi valde för att utveckla protokollet är en generell designmetod där vi efter granskningen av tidigare protokoll tar fram ett antal punkter som det nya protokollet skall uppnå. Det visade sig dock vara problematiskt att få fram svar om vissa protokoll så vi frångick metoden genom att istället utveckla protokollet utefter ett antal olika scenarion som det bör kunna hantera. Resultatet av arbetet är ett protokoll som uppfyllde nästan alla mål vi satt upp för det. I de fall vi inte lyckades med att uppfylla målen har vi möjliggjort för framtida expanderingar. / This report covers the development of a new protocol for use in Home Automation over IP networks, with focus on flexibility and simplicity. We chose to develop a new protocol for Home Automation because a review of current protocols suggests that these aren't open or flexible enough to suit every device in use or every scenario that might be applicable. In our literature studies we gathered information for use as the basis of our protocol and give us more insight into the technologies behind current home automation protocols. This also gave us the opportunity to compare our finished protocol with existing protocols. The method we chose for developing the protocol is a generic design method where after reviewing existing protocols, we establish a number of goals for the new protocol. It did however turn out to be difficult to acquire relevant information about some of the protocols. Because of this we used a slightly different approach, basing the new protocol on a number of scenarios we want it to be able to handle. The result is a protocol which satisfied almost every goal we established. For the few it didn't, we made it possible to satisfy them with future expansions.
|
12 |
Geochemical Study of Trace and Critical Elements in Chalcopyrite and Pyrite from the Assarel Porphyry-Cu-Au Deposit, Bulgaria / Spårelement i kopparkis och pyrit från Cu-Au-porfyrmalmen i Assarel, Bulgarien, med fokus på kritiska metallerLobo, Liz January 2022 (has links)
No description available.
|
13 |
Ore Characterization of theZn-Pb-Ag-Au Carbonate-ReplacementDeposit at Piavitsa, Greece: : LA-ICP-MSSulphide Analysis, Whole-Rock Chemistryand XRF-XCT Scanning Technology / Zn-Pb-Ag-Au-mineraliseringen i Piavitsa, norra Grekland: : Malmkarakterisering genom LA-ICP-MS, bulkgeokemioch XCT-XRF analyserSandoval, Daniel Gustavo January 2022 (has links)
The polymetallic carbonate-replacement prospect at Piavitsa is part of the ore-forming system of the Stratoni Fault Zone within the Kassandra mining district in northeast Greece. This district constitutes the southern segment of the Serbo-Macedonian belt, a promising region for the exploration of precious and critical metals in Greece. This master thesis is framed within the X-MINE project under the Horizon 2020 program. Three main objectives are defined: (1) to characterize the mineralization at Piavitsa utilizing reflected light microscopy, microprobe, and laser-ablation inductively coupled mass spectrometry (LA-ICP-MS), and (2) to evaluate the contributions of the scanning GeoCore X10 (XRF-XCT) technology to the understanding of the ore, and (3) to assess potential environmental impacts. At Piavitsa, an early base-metal assemblage, composed of brecciated sphalerite and As-rich pyrite, is infilled and overprinted by an assemblage of As-poor to moderately-rich pyrite, alabandite, and Mnrich sphalerite. The latter two are corroded and replaced by Mn-rich carbonate. Fractures and interstices are infilled by a late assemblage of Ca-Mn-Mg carbonate, galena, As-poor pyrite, tetrahedrite-tennantite, and in the periphery of the orebody, seligmannite-bournonite and kesterite. Based on absolute elemental concentrations obtained by in situ LA-ICP-MS, the mineral hosts (primary; secondary) are defined as: pyrite (Fe, Co, Ni, and Au; As), sphalerite (Zn, Ga, Ge, Cd, Sn; Mn), galena and bournonite (Pb, Se, Te, Tl, and Bi; Ag, Sb), alabandite (Mn; Cd and Sb), and tetrahedrite (Cu, As, Ag, and Sb). In cocrystallized assemblages, some differences are observed. In pyritetetrahedrite asemblages, tetrahedrite mainly hosts As and Au, instead of pyrite, whereas in sphaleritealabandite assemblages, alabandite is the host of Mn, As, Ag and Sb and sphalerite, of Cd and Sn. Three concentrates are produced from the current mining operations of Hellas Gold in the Stratoni area, e.g, Mavres Petres Zn-Pb mine. From LA-ICP-MS, it is inferred that a sphalerite concentrate from the Piavitsa ore would contain Ga (peripheral ore: 150 ppm; main ore: 10-40 ppm), Sn (peripheral ore: 800-1500 ppm; main ore: 25-230 ppm), and Cd (1600-4000 ppm). The galena concentrate would contain concentrations of Ag (1300-1700 ppm), Se (50 ppm), Sb (1200-1600 ppm), and Te (85-210 ppm). The pyrite concentrate would contain Au (0.5-24.5 ppm) but would be devoid of other economical trace elements. The values given here consider 100% purity, instead of 80-90% reported in previous studies. The GeoCore X10 technology provides a good indication of measurable elements. (>0.01 wt.%), including Mn, Fe, Cu, Zn, and Pb; As, Sb and Sn. Moreover, it helps to quickly identify the main ore and gangue minerals and their distribution in the deposit. The distinction between the ore and gangue minerals can be easily achieved based on the difference in their X-ray attenuation. It is worth highlighting that mineralogical info obtained by other analytical methods is still essential to validate the outputs of the instrument and to improve the interpretations drawn from them. Regarding the environmental impacts of mining the ore, the potential for acid generation and pollutant mobilization are low due to the carbonate-rich matrix. The mining poses low radioactivity risks due to the low concentration of radionuclides. Establishing a pollutants baseline and monitoring the surrounding water bodies and soils is highly recommended to reduce overlooked environmental impacts.
|
Page generated in 0.0266 seconds