• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudio de redes neuronales modulares para el modelado de sistemas dinámicos no lineales

Morcego Seix, Bernardo 17 July 2000 (has links)
de la memòriaEn aquest estudi es consideren aspectes teòrics i pràctics del modelatge de sistemes no lineals mitjançant xarxes neuronals modulars.A la vessant teòrica s'ha proposat un model que aprofita les avantatges de les xarxes neuronals i minimitza els seus inconvenients, permetent interpretar físicament els resultats i afegir coneixement previ per accelerar el procés de modelatge. Es tracta de les xarxes de mòduls neuronals.Un mòdul neuronal és una xarxa neuronal que aprofita l'ús de restriccions estructurals per forçar un tipus de comportament al model. Aquest concepte s'ha creat a propòsit en aquest estudi, recolzat per l'argument de que les restriccions topològiques constitueixen un mètode més versàtil i efectiu que el propi mecanisme d'aprenentatge per facilitar comportaments desitjats en una xarxa neuronal.D'aquesta forma, una vegada aplicat el procés de identificació, el model resultant és una xarxa neuronal composada per mòduls, cadascun dels quals representa un bloc funcional del sistema amb un significat fàcilment interpretable.Donat que els mòduls neuronals són paradigmes nous dins de l'àmbit de les xarxes neuronals, s'ha proposat una sèrie de pautes pel seu disseny i es descriu un conjunt de mòduls neuronals format per nou no linealitats dures i els sistemes lineals sense restricció d'ordre.També s'ha realitzat un estudi formal en el que s'han caracteritzat els sistemes que es poden aproximar mitjançant xarxes de mòduls neuronals, el conjunt ?NM, i s'ha establert una cota de l'error d'aquesta aproximació. Aquest resultat és fonamental perquè assenta una base sòlida per plantejar el modelatge de sistemes no lineals amb xarxes de mòduls neuronals. En ell es demostra que, com més precisa sigui l'aproximació de les diferents parts del sistema, més precisa serà l'aproximació del sistema global.Des del punt de vista pràctic, es consideren els aspectes de creació i optimització del model proposat.Primerament, i donat que es tracta d'una xarxa neuronal, es repassen els mecanismes existents a la literatura per adaptar els paràmetres del model al problema. En aquest sentit, s'ha dissenyat un algoritme d'aprenentatge específic per les xarxes neuronals modulars, el modular backpropagation, el cost computacional del qual comparat amb altres algoritmes clàssics, és menor en estructures modulars.Es descriu també una eina de modelització dissenyada a propòsit com mètode per crear i optimitzar, de forma automàtica, xarxes de mòduls neuronals. Aquesta eina combina la programació evolutiva, algoritmes clàssics d'aprenentatge neuronal i el gestor d'aprenentatge, modular backpropagation, amb la finalitat de resoldre problemes de modelització de sistemes no lineals mitjançant xarxes de mòduls neuronals.Finalment, es proposa un esquema del procés de modelització de sistemes no lineals utilitzant les eines desenvolupades en aquest estudi. S'ha creat una aplicació que permet sistematitzar aquest procés i s'ha obtingut els models de tres sistemes no lineals per comprovar la seva utilitat. Els problemes que s'han sotmès al procés de modelització amb xarxes neuronals són: un motor de corrent continu, un sistema no lineal amb histèresi i un element piezoelèctric. En els tres casos s'ha arribat a una solució satisfactòria que permet confirmar la utilitat de les eines desenvolupades en aquest estudi. / This work is concerned with theoretical and applied aspects of nonlinear system modelling with modular neural networks.From the theoretical viewpoint, a new model is proposed. This model attempts to combine the capabilities of neural networks for nonlinear function approximation with the structural organisation of classical block oriented techniques for system modelling and identification. This model is the Neural Module (NM).A neural module is a neural network that behaves inherently like a function or family of functions. The specified behaviour is forced with the use of topological restrictions in the network. The neural module is a new concept developed upon the argument that topological restrictions is a much more versatile and effective way of facilitating a specific behaviour in a neural network than the learning mechanism itself.Once the learning process finishes, the resulting model is a neural network composed by modules. Each module is supposed to model a functional element of the system, with an easy to understand meaning.As long as the neural module is a new paradigm in the neural network domain, rules and guidelines are given for their design. A set of neural modules with nine hard nonlinearities and the linear systems is also described.The set of dynamic systems that can be approximated using neural modules, called SNM, is formally described. The approximation error between en element of SNM and its neural model is calculated and found bounded. This is a basic result that sets up a firm base from which neural module modelling could be considered as a useful type of model.From the practical viewpoint, creation and optimisation aspects of the proposed model are considered.First of all, some of the classical rules of parameter adaptation in neural networks are reviewed. In order to allow modular networks to learn more efficiently, a specific learning algorithm is introduced. This is the modular backpropagation (MBP) algorithm. The computational cost of MPB is less than the cost of classical algorithms when they are applied to modular structures.A modelling tool, specially designed for the automatic creation and optimisation of modular neural networks, is also described. This tool combines Evolutionary Programming, classical neural learning algorithms and the learning manager, MBP. This tool is aimed at solving nonlinear modelling problems with the use of modular neural networks.Finally, an outline of the modelling process with the tools developed in this work is given. This process is applied to the modelling and identification of three nonlinear systems, which are: a dc motor, a nonlinear system with hysteresis, and a piezoelectric element. The three cases are modelled satisfactorily and the usefulness of the framework presented is confirmed.

Page generated in 0.3171 seconds