• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 243
  • 46
  • 17
  • 16
  • 9
  • 9
  • 9
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 447
  • 251
  • 82
  • 52
  • 44
  • 43
  • 43
  • 39
  • 37
  • 33
  • 30
  • 27
  • 27
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Changes in plasma inorganic phosphate associated with endocrine activity in Xenopus laevis

Schrire, Velva 16 April 2020 (has links)
The plasma inorganic phosphate level may be influenced by (1) factors affecting the intermediary metabolism of phosphorus, (2) alternation in the degree of absorption of phosphorus, (3) alteration in the degree of excretion of phosphorus. In the introduction, the intermediary metabolism of phosphorus, particularly as far as the endocrine glands are concerned, is discussed in detail, whereas the absorption and excretion are but briefly outlined.
122

Analysis Of The Role Of Glucocorticoids And Their Precursors On Amphibian Metamorphosis

Paul, Bidisha 06 June 2023 (has links)
No description available.
123

Duplicate Gene Evolution in a Tetraploid African Clawed Frog (Silurana)

Alcock, Brian 11 1900 (has links)
By increasing genomic size, whole-genome duplication (WGD) is considered a major source of evolutionary innovation and speciation. We examined sequence evolution and expression divergence following WGD in a tetraploid African clawed frog (\textit{Silurana}). We hypothesized that the redundancy generated by WGD might allow for sex-specific and/or tissue-specific divergence, contributing to sexual dimorphism in this frog, and that such changes could be detected at both the expression and sequence levels. We investigated this hypothesis with a transcriptome-based approach, comparing both sexes across brain, heart and liver. We compared molecular evolution and expression divergence of duplicate gene homeologs to singleton genes and to an extant diploid relative, and identified genes with evidence for sex-biased expression. In doing so, we provide evidence for an allopolyploid mechanism of WGD and speciation in \textit{Silurana}. Additionally, we find that female-biased gene expression is more prevalent among duplicate genes than male-biased expression, particularly in brain where expression levels are highest. We similarly identified antagonistically sex-biased homeologs with indication of positive selection. Our results indicate that divergent evolution at both the sequence and expression levels following WGD favors the co-option of female-biased gene expression and may help resolve sexually antagonistic selection in this frog, thereby facilitating the evolution of sexual dimorphism. / Thesis / Master of Science (MSc) / Whole-genome duplication (WGD) is considered a major source of evolutionary innovation and a driver of speciation. By increasing genetic content and introducing redundancy, selective pressures are reduced and paralogous pairs diverge. We investigate how sex and tissue type contribute to duplicate gene divergence following WGD in a tetraploid African clawed frog. We find evidence for sex-dependent variation in sex-biased expression patterns of duplicate genes in brain, heart and liver, and evaluate how molecular evolution of duplicate genes accounts for expression divergence between sexes. This thesis provides a general framework for investigating sex-biased duplicate gene evolution in an amphibious tetrapod.
124

Gene Expression Regulation Evolution following Whole Genome Duplication: two comparative studies in Xenopus clawed frogs

Anderson, Dave 08 1900 (has links)
<p> Gene expression, and its mechanisms of regulation, remains a major area for contemporary research in evolution. With its role connecting specific gene sequences and their protein products, contributing to efforts toward understanding the specific contributions of different mechanisms of gene expression regulation is the goal of this thesis. Through two specific case studies, this thesis examines expression regulatory divergence in two different physiological contexts; the immuno-response rag1 and rag2 genes, and the male upregulated sex differentiation gene dmrt1. </p> / Thesis / Master of Science (MSc)
125

Loss of Chk1 Function and Exogenous Expression of Cyclin A1/Cdk2 Results in Apoptosis after the MBT in Early Xenopus laevis Embryos

Carter, Ayesha DonNell 26 May 2005 (has links)
Early Xenopus laevis embryonic cell cycles exemplify rapid, non-pathological cell cycles without checkpoint pathways to arrest cell cycles in response to DNA assaults. There is no transcription or apoptosis during these cell cycles, and they continue unperturbed until the 12th cell cycle, marking a period called the midblastula transition (MBT). At the MBT, the embryo undergoes a period of developmental remodeling: gap phases are acquired, zygotic transcription is initiated, and the maternal mRNAs are degraded. After the MBT, checkpoint pathways can be activated in response to unreplicated DNA, and apoptosis initiates when continued embryonic survival is compromised. These studies examine how cell cycle regulation and apoptotic regulation are related. Specifically, the role of two cell cycle components, Chk1 and cyclin A1/Cdk2, during apoptosis was studied during early development of Xenopus embryos. Chk1 is a serine/threonine kinase that inhibits the activity of cyclin-dependent kinases (Cdks) in response to unreplicated DNA. In the pre-MBT embryo, Chk1 is present, but inactive. Injection of mRNA encoding dominant-negative Chk1 (DN-Chk1) into single-celled embryos results in the initiation of apoptosis after the MBT. The loss of Chk1 function also results in the initiation of additional rapid rounds of DNA replication after the MBT. These results suggest that Chk1 has a required function for the embryo after the MBT, possibly through the regulation of a cyclin/Cdk complex responsible for the apoptotic checkpoint. Cyclin A1 is a maternally provided mRNA that is degraded at the MBT. Prior to the MBT, cyclin A1 complexes exclusively with Cdc2 to regulate mitosis. When embryos are treated with ionizing radiation (IR), cyclin A1 activity and protein level persist after the MBT, and cyclin A1 complexes with Cdk2. When treated with aphidicolin, cyclin A1-associated activity and protein level persists. Injection of cyclin A1/Cdk2 into single-cell embryos results in apoptosis after the MBT; however, inhibition of cyclin A1 expression does not abrogate apoptosis. Therefore, cyclin A1/Cdk2 activity is sufficient, but not required, for the initiation of apoptosis in the early Xenopus embryo. These studies show that Chk1 and cyclin A1/Cdk2 have roles in regulating apoptosis in the post-MBT embryo. / Ph. D.
126

The Role of Chk2 and Wee1 Protein Kinases during the Early Embryonic Development of Xenopus laevis

Wroble, Brian Noel 29 November 2005 (has links)
In somatic cells, when DNA is damaged or incompletely replicated, checkpoint pathways arrest the cell cycle prior to M or S phases by inhibiting cyclin-dependent kinases (Cdks). In Xenopus laevis, embryonic cellular divisions (2-12) consist of rapid cleavage cycles in which gap phases, checkpoint engagement, and apoptosis are absent. Upon the completion of the 12th cellular division, the midblastula transition (MBT) begins and the cell cycle lengthens, acquiring gap phases. In addition, cell cycle checkpoint pathways and an apoptotic program become functional. The studies described here were performed to better understand the roles of two protein kinases, Chk2/Cds1 and Wee1, during checkpoint signaling in the developing embryo. The DNA damage checkpoint is mediated by the Chk2/Cds1 kinase. Conflicting evidence implicates Chk2 as an inhibitor or promoter of apoptosis. To better understand the developmental function of Chk2 and its role in apoptosis, we expressed wild-type (wt) and dominant-negative (DN) Chk2 in Xenopus embryos. Wt-Chk2 created a pre-MBT checkpoint by promoting degradation of Cdc25A and phosphorylation of Cdks. Embryos expressing DN-Chk2 developed normally until gastrulation and then underwent apoptosis. Conversely, low doses of wt-Chk2 blocked radiation-induced apoptosis. These data indicate that Chk2 inhibits apoptosis in the early embryo. Therefore, Chk2 operates as a switch between cell cycle arrest and apoptosis in response to genomic assaults. In Xenopus laevis, Wee1 kinase phosphorylates and inhibits Cdks. To determine the role of Wee1 in cell cycle checkpoint signaling and remodeling at the MBT, exogenous Wee1 was expressed in one-cell stage embryos. Modest overexpression of Wee1 created a pre-MBT cell cycle checkpoint, similar to Chk2, characterized by cell cycle delay and phosphorylation of Cdks. Furthermore, overexpression of Wee1 disrupted remodeling events that normally occur at the MBT, including degradation of Cdc25A, cyclin E, and Wee1. Interestingly, overexpression of Wee1 also resulted in post-MBT apoptosis. Taken together, these data suggest the importance of Wee1 as not only a Cdk inhibitory kinase, but also potentially as a promoter of apoptosis during early development of Xenopus laevis. The studies described here provide evidence that Chk2 and Wee1 have both similar and distinct roles in the developing embryo. / Ph. D.
127

Experimental evidnece for hysteresis in the cell cycles of Xenopus Laevis egg extracts

Sha, Wei 28 August 2002 (has links)
In 1993, Novak and Tyson published a comprehensive mathematical model of the regulation of M-phase promoting factor (MPF) activity in Xenopus laevis eggs and egg extracts. Although this model was in agreement with existing and subsequent experimental data, fundamental predictions that the cell cycle is driven by a hysteresis loop have never been validated experimentally. The model's predictions of bifurcations that create and destroy MPF activity, indicative of hysteresis, were tested in this study. <u>Prediction 1: The threshold concentration of cyclin B required to activate MPF is measurably higher than the threshold concentration required to inactivate MPF.</u> The difference in thresholds implies that the MPF control system is hysteretic and bistable. To measure these thresholds, extracts in interphase or M-phase were supplemented with varying concentrations of non-degradable human cyclin B1 protein. MPF activity was determined by the morphology of sperm nuclei and by assays of histone H1 kinase activity. Consistent with the model, the activation threshold was determined to be 40 nM, which is two-fold higher than the inactivation threshold, 20 nM. <u>Prediction 2: For cyclin levels marginally above the activation threshold concentration of cyclin B, there is a dramatic "slowing-down" in the rate of MPF activation.</u> Supra-threshold concentrations of nondegradable cyclin B1 were added to cycloheximide-treated CSF-released extracts, and samples taken at various time-points were analyzed for MPF activity. At 40 nM cyclin B1, just above the activation threshold, the lag time for MPF activation was 45 - 60 minutes; at 50 nM cyclin B1, the lag time was between 30 - 45 minutes; and at 60 nM or higher concentrations of cyclin B1, the lag time was 20 - 30 minutes, thus confirming the prediction of the Novak-Tyson model. <u>Prediction 3: DNA replication checkpoint increases the activation threshold concentration of cyclin B by increasing the hysteresis loop.</u> Cycloheximide-treated, CSF-released extracts containing 1200 sperm nuclei/&#956;l were treated with aphidicolin, then supplemented with varying concentrations of nondegradable cyclin B1. The activation threshold was 100 nM, 2.5 fold higher than in extracts lacking aphidicolin. <u>Conclusions:</u> These studies confirm three predictions of the Novak-Tyson model and indicate that hysteresis underlies cell cycle control in Xenopus egg extracts. These experiments validate use of mathematical models to study complex biological control systems such as the eukayotic cell cycle. / Master of Science
128

Thyroid Endocrine Disruption of Propylparaben Assessed Using an Optimized Individual Xenopus tropicalis Metamorphosing Tadpole Exposure System

Pohl, Johannes January 2015 (has links)
The anuran Xenopus tropicalis tadpole is an attractive model animal in toxicological evaluation of suspected thyroid disrupting xenobiotics. Due to its reliance of a functioning hypothalamic-pituitary-thyroid (HPT) axis for normal metamorphosis, effects on the HPT axis produces apical endpoints, which are easy to measure. More sensitive endpoints of mRNA expression and histological evaluation of the thyroid gland itself provide strong indications of in vivo thyroid endocrine disruption. X. tropicalis is traditionally exposed in groups of 20 animals in four replicates for each treatment group. However, exposing tadpoles individually can provide stronger statistics and a reduction of total animal sacrifice. In this study we have developed and optimized an individual exposure system by a method development study. This method was then applied in an exposure experiment of a suspected thyroid endocrine disruptor, propylparaben (PrP). Prometamorphotic (NF stage 51) X. tropicalis tadpoles were distributed in three treatment groups (0.05, 0.5 and 5.0 mg PrP/L water) and maintained semi-statically for 14 days. Afterwards, apical measurements (body weight (BW), total body length (BL), snout to vent length (SVL) and hind limb length (HLL)) and reached developmental stage were assessed. In addition, mRNA expression of HPT axis relevant genes encoding deiodinase 2 (D2, hepatic tissue), deiodinase 3 (D3, hepatic and tail tissue) and transthyretin (Ttr, hepatic tissue) were measured by quantitative reverse transcription PCR (qRT-PCR). The PrP exposure did not affect general growth and development, but it did cause a downregulation of dio3 and ttr. The downregulation of dio3 could possibly be associated with a reduced serum content of thyroid hormone, while ttr might be connected to a previously described xenoestrogenic effect of PrP in vitro and in fish.
129

The glucocorticoid responsive unit of the xenopus [gamma]fibrinogen gene requires a cooperative interaction between the glucocorticoid receptor and a novel accessory factor

Morin, Brian L. January 1999 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 1999. / Typescript. Vita. Includes bibliographical references (leaves 128-129). Also available on the Internet.
130

Characterization of the expression and function of the early response 1 gene in Xenopus laevis embryonic development /

Luchman, Hema Artee, January 2002 (has links)
Thesis (Ph.D.)--Memorial University of Newfoundland, 2002. / Includes bibliographical references.

Page generated in 0.4566 seconds