Spelling suggestions: "subject:"least."" "subject:"years.""
581 |
Evaluation of turkey (Meleagris gallopavo) breeder hen and market male performances when fed diets supplemented with a yeast culture containing Saccharomyces cerevisiaeBradley, Gary L. 08 March 1994 (has links)
Studies investigating the effects of feeding diets
containing the yeast, Saccharomyces cerevisiae var.
boulardii (SCB), and a yeast culture (YC) containing S.
cerevisiae were conducted in market turkeys and Medium White
turkey breeder hens.
Increased utilization of dietary gross energy, N, Ca,
P, B, K, Mg, and Mn were observed in poults fed a diet
containing 1% YC when compared to the control and 1%
inactivated YC diets at 4 weeks of age (WOA). It was
concluded that the YC must be "biologically active" in order
to affect nutrient retention in poults.
Feeding day-old poults diets containing varying amounts
of SCB resulted in increased body weights at 3 WOA. Greater
body weights and a decrease in the number of mucous-secreting
goblet cells per mm of villus height and a decreased
crypt depth were observed in poults receiving .02% SCB from
3 to 5 WOA. No dietary differences were observed for either
villus height or width. Results indicated that feeding SCB
to poults increased body weight and altered gut morphology.
Experiments conducted to evaluate the effects of .25%
YC on market male turkey performance resulted in contradictory responses. Supplemental YC increased body weights of turkeys at 5, 8, 11, and 14 WOA in one trial, while no
differences and depressed body weights from 2 through 17 WOA
were observed in two subsequent trials, respectively.
Similarly, feed to gain ratios were improved from day-old to
5 WOA in one trial, while no differences and a higher feed
to gain ratio was observed from 2 to 5 WOA in the second and
third trials, respectively. Results indicated that
unelucidated factors may influence the response of market
male turkeys fed dietary YC.
Consistent results have been observed in two trials on
the hatchability of fertile eggs (HFE) from hens of three
genetic lines fed .5% dietary YC. Early embryonic mortality
(0-10 d of incubation) was reduced when hens were
supplemented with YC and the HFE was increased in eggs
stored less than 9 days in select hen genotypes. Results
indicated that the breeder hen's genotype and pre-incubation
storage time are factors to be considered when evaluating a
YC in turkey breeder hen diets. / Graduation date: 1994
|
582 |
ncreased Production and Extraction Efficiency of Triacylglycerides from Microorganisms and an Enhanced Understanding of the Pathways Involved in the Production of Triacylglycerides and Fatty AlcoholsWillis, Robert M. 01 May 2013 (has links)
The continued increase in the demand for fossil fuels combined with their ever dwindling supply has prompted the search for a suitable alternative fuel. The research contained within this dissertation seeks to increase the lipid content of cellular feedstocks, improve extraction efficiencies of lipids, and understand the pathways involved in the production of fatty alcohols and triacylglycerides from microbial feedstocks. As part of this research the diatom, Cheatoceros gracilis, was grown at small and large scale to determine optimal growing conditions. No apparent nutrient stress trigger was required to initiate the accumulation of the biodiesel precursor triacylglyceride, unlike other documented algal strains. A follow-up to this project demonstrated that the microalga C. gracilis may utilize light intensity as a trigger for lipid production. A major difficulty in the production of biofuels from microorganisms is the expensive process of dewatering, drying, and extracting the lipid compounds from the cells. As part of this research, a process has been developed that allows for lipid extraction to occur in the presence of water at a point as low as 2 percent solids or 98 percent water. This process utilizes a single organic solvent that mixes well with microbial lipids, but poorly with water allowing for efficient extraction of lipids and fast solvent to water separation. This process greatly decreases the cost of the microbial biofuels production associated with the removal of water from cell slurries. Triacylglycerides and fatty alcohols are oleochemicals that are commonly used in industrial, pharmaceutical, and consumable processes. A predicted fatty acyl CoA reductase enzyme was cloned into an E. coli vector, expressed, characterized and shown to be active as a dual reductive enzyme reducing a fatty acyl CoA to its respective fatty alcohol, constituting the first enzyme of this type discovered in a bacterium. The process of triacylglyceride production in microbes is fairly well understood; however, the process that regulates this production has not yet been fully explored. As part of this research, the model yeast organism, Yarrowea lipolytica, is utilized to identify essential genes for citrate transport that if removed could result in increasing triacylglyceride production in vivo.
|
583 |
The Extensive and Condition-dependent Nature of Epistasis among Whole-genome Duplicates in YeastMusso, Gabriel 21 April 2010 (has links)
Immediately following a gene duplication event, if both gene copies are to be fixed into a species’ genome there is a period of enhanced selection acting on either one or both duplicates (paralogs) that results in some extent of functional divergence. However, as redundancy among extant duplicates is thought to confer genomic robustness, a consequent question is: how much functional overlap exists between duplicates that are retained over long spans of evolutionary time? To examine this issue I determined the extent of shared protein interactions and protein complex membership for paralogous gene pairs resulting from an ancient Whole Genome Duplication (WGD) event in yeast, finding retained functional overlap to be substantial among this group. Surprisingly however, I found paralogs existing within the same complex tended to maintain greater disparities in expression, suggesting the existence of previously proposed “transcriptional back-up” mechanisms. To test both for existence of such mechanisms and for any phenotypic manifestation of their shared functional overlap I surveyed for the presence of aggravating genetic interactions between 399 WGD-resultant paralog pairs. While these paralogs exhibited a high frequency (~30%) of epistasis, observed genetic interactions were not predictable based on protein interaction overlap. Further, exposure to a limited number of stressors confirmed that additional instances of epistasis were only observable under alternate conditions. As only a small number of stress conditions were tested, the high frequency of genetic interactions reported appears to be a minimum estimate of the true extent of epistasis among WGD paralogs, potentially explaining the lack of overlap with protein interaction data. As it is impossible to survey an infinite condition space, Synthetic Genetic Array (SGA) screening of yeast strains carrying double-deletions of paralog pairs was used to assess functional redundancy among a group of the remaining non-epistatic paralog pairs. The resulting interactions demonstrated functional relationships in non-epistatic paralogs only obvious upon ablation of both duplicates, suggesting that these interactions had initially been masked through redundant function. These findings ultimately suggest an advantage to retained functional overlap among whole genome duplicates that is capable of being stably maintained through millions of years of evolutionary time.
|
584 |
Proteomic and Molecular Genetic Investigation of Deubiquitinating Enzymes in the Budding Yeast Saccharomyces cerevisiaeLam, Mandy Hiu Yi 23 February 2011 (has links)
Protein ubiquitination is essential for the proper functioning of many eukaryotic cellular processes. The cleavage of ubiquitin chains from ubiquitinated proteins is performed by deubiquitinating enzymes, of which there are 16 in the Ubp (ubiquitin specific protease) group in the budding yeast Saccharomyces cerevisiae. The goal of my thesis has been to examine the biological roles and molecular functions of these enzymes using a combination of proteomic and
molecular genetic approaches.
As part of a large collaborative effort, interacting protein partners of the Ubps were
isolated through affinity purification of tagged proteins, followed by protein identification by mass spectrometry. Purification of tagged Ubp6 led to the identification of the 19S proteasome
complex, along with a novel subunit, Sem1. As the human homologue of Sem1 was previously
identified as being associated with a protein involved in the repair of DNA double-strand breaks, I examined the possible role of Sem1 in DNA damage repair. A deletion of Sem1 and other 19S subunits resulted in hypersensitivity to various DNA damaging drugs, implicating the 19S complex in the process of DNA repair.
iii
I also found that purified Ubp2 interacted stably with the ubiquitin ligase Rsp5 and the
protein Rup1. UBP2 interacts genetically with RSP5, indicating a functional relationship, while
Rup1 facilitates the physical tethering of Ubp2 to Rsp5. Using the uracil permease Fur4, a Rsp5
substrate, as a model reporter, I found that ubp2Δ cells exhibited a temporal stabilization of Fur4
at the plasma membrane following the induction of endocytosis, implicating Ubp2 in protein
sorting, specifically at the multivesicular body. In order to understand the role of Ubp2, I examined the effect of Ubp2 on Rsp5 function. I found that Rsp5, similar to its mammalian homologues, is auto-ubiquitinated in vivo, and that Ubp2 is able to directly deubiquitinate Rsp5 in vitro. Moreover, the presence of a substrate or Rup1 both resulted in increased autoubiquitination, implying an auto-inhibitory mechanism of Rsp5 regulation. Taken together, the data presented in this thesis implicate deubiquitinating enzymes in interesting and varied roles in the cell, and suggest a novel mechanism for the modulation of Rsp5-dependent trafficking processes.
|
585 |
Pik1p, a phosphatidylinositol 4-kinase, interacts with Cdc4p : a contractile ring protein essential for cytokinesis in fission yeastSteinbach, Sarah Katherina 24 June 2008
A yeast two-hybrid assay suggested the possibility of an interaction between Cdc4p, a small EF-hand protein essential for cytokinesis, and Pik1p in S. pombe. This interaction was unexpected, as one function of Cdc4p is that of an essential light chain, bound to the first IQ-motif of type II myosins, whereas Pik1p is a phosphatidylinositol 4-kinase. The objective of this work was to analyze the effects of Pik1p lipid kinase activity on the cell cycle of S. pombe. Another goal of this study was to evaluate the functional significance of the interaction between Cdc4p and Pik1p. This was performed by generating two mutants of pik1: one that abolished lipid kinase activity (pik1-D709A) and one that abolished Pik1p Cdc4p-binding activity (pik1-R838A). Pik1p has a conserved IQ-motif in its C-terminal region. A mutation in this site (R838A), homologous to a residue which was mutated in myosin and abrogated the interaction with Cdc4p, prevented the interaction with Cdc4p in a yeast two-hybrid assay and ELISA. An increase in lipid kinase activity was observed in cell extracts upon ectopic expression of pik1-wt from an episome, which was abolished by a mutation in the lipid kinase domain of Pik1p (D709A), but not by the R838A mutation. However, little to no increase in lipid kinase activity was observed upon ectopic expression of pik1-wt and pik1-R838A in a strain carrying a conditionally lethal allele of cdc4 (cdc4-G107S). This mutation in Cdc4p was shown previously to prevent the interaction with Pik1p in yeast two-hybrid assays. Ectopic expression of pik1-wt suppressed cell proliferation, with disruption of actin cytoskeletal structures and contractile ring formation. These results were not observed with the ectopic expression of the pik1-R838A mutant or when pik1-wt was expressed in the cdc4-G107S strain. Ectopic expression of pik1-R838A resulted in cell shortening, likely through inhibition of growth, and many of the short cells showed an accumulation of the expressed Pik1p protein at the cell tips. Formation of the contractile ring appeared unaffected in cells with ectopic expression of the pik1-D709A mutant, but many of these cells had thick or more than one septum, characteristic of a septation defect. The ectopic expression phenotypes were dosage dependent since lower levels of expression greatly reduced the severity of the ectopic phenotypes. Pik1p lipid kinase activity is essential and, based on ectopic expression studies, is required for septation. There is a physical and functional interaction between Cdc4p and Pik1p which is not essential for cell viability, but suggests a role for Cdc4p in phosphoinositide metabolism.
|
586 |
Analysis of Telomere Healing of DNA Double-strand BreaksZhang, Wei 31 August 2012 (has links)
DNA double-strand breaks (DSBs) are a threat to cell survival and genome integrity. In addition to canonical DNA repair systems, DSBs can be converted to telomeres by telomerase. This process, herein termed telomere healing, endangers genome stability since it usually results in chromosome arm loss. Therefore, cells possess mechanisms that prevent the untimely action of
telomerase on DSBs. In this work, I reported the completion of a transposon mutagenesis screen in budding yeast and the identification of five novel genes (RRD1, CIK1, CTF18, RTS1, and IRC6) critical for telomere healing. The characterization of Rrd1 led to the surprising finding that
Rrd1 facilitates telomere healing at DSBs with little or no TG-rich sequences but not at DSBs with long tracts of telomeric sequences. Pph3, a PP4 phosphatase, acts in conjunction with Rrd1
to promote telomere healing. Conversely, Mec1, the ATR ortholog, phosphorylates Cdc13 on its S306 residue to suppress its accumulation at DSBs. Rrd1 and Pph3 oppose Cdc13 S306 phosphorylation and are necessary for the efficient accumulation of Cdc13 at DSBs. Next, I found that Cik1 and its kinesin partner Kar3 are both important for telomere healing. Importantly, Kar3 contributes to telomere healing through its motor function. In contrast to Rrd1,
Kar3 contributes to telomere healing regardless of telomeric sequence lengths adjacent to the break. Finally, Cik1 and Kar3 have a general role in DNA repair and physically associate with DSBs, which is dependent on the process of anchoring DSBs to nuclear periphery. In conclusion,
I identified a mechanism by which the ATR family of kinases enforces genome integrity, a phosphoregulatory loop that underscores the contribution of Cdc13 to the fate of DNA ends, and a kinesin complex critical for the spatial organization of DNA repair.
|
587 |
Functional Characterization of Members of a Clade of F-box Proteins in Arabidopsis thalianaTurgeon, Paul Joseph 26 February 2009 (has links)
In Arabidopsis, the F-box gene family encodes a large number of proteins postulated to act as substrate selectors for proteasome-mediated protein degradation. Recent reports document the importance of F-box proteins in developmental and metabolic signaling. Our microarray analyses of inflorescences of the brevipedicellus(bp) mutant indicate several F-box proteins are upregulated, suggesting that BP represses these genes in wild type plants to condition normal inflorescence development. We undertook analyses to examine the function of these proteins and their contribution to the pleiotropic phenotypes of bp. Yeast-2-hybrid screens revealed that the F-box protein At1g80440 binds to phenylalanine ammonia lyase-1(PAL1), the gateway enzyme of phenylpropanoid metabolism. Transgenic lines driven by the 35S cauliflower mosaic virus were attained but could not be propagated, suggesting a fatal phenotype. BP driven F-box expression results in phyllotaxy defects, manifest as alterations in the emergence of inflorescence and floral meristems in the axils of some cauline leaves.
|
588 |
A Novel Approach for Identifying Synthetic Dosage Lethal Interactions in Pooled Yeast CulturesRalph, Alison Carly 04 December 2012 (has links)
Systematic genomic studies in the budding yeast S. cerevisiae have greatly increased our
capacity to conduct functional profiling of the eukaryotic genome. I describe a new method that
makes use of yeast “Barcoder” strains to uniquely tag strains in a yeast overexpression collection
(FLEX) and to systematically examine the effects of gene overexpression on cell fitness. This
novel system is compatible with the so-called Synthetic Genetic Array (SGA) method, which
automates yeast genetics and allows introduction of marked query alleles of interest into arrayed
collections of yeast mutants. I identified SDL interactions for two key regulatory kinases, Dun1
and Mck1, using my system. I also used my array and approach to identify SDL interactions for
Dun1 that are only manifest in the presence of DNA damage. These studies demonstrate the
utility of the pooled SGA-SDL method for systematic discovery of condition-specific genetic
interactions in conserved biological pathways.
|
589 |
The Protein-Protein Interactome of Saccharomyces cerevisiae ABC Transporters Nft1p, Pdr10p, Pdr18p and Vmr1pHanif, Asad 20 November 2012 (has links)
The Membrane Yeast Two-Hybrid (MYTH) technology was used in this study to find protein-protein interactors of Saccharomyces cerevisiae ATP binding cassette (ABC) transporters Nft1p, Pdr10p, Pdr18p and Vmr1p. There were 23 interactors for Nft1p, 22 interactors for Pdr10p, 4 interactors for Pdr18p and 1 interactor for Vmr1p. The 43 unique interactors belong to a wide variety of functional categories. There were 11 interactors involved in metabolism, 9 interactors involved in transport, 8 interactors with unknown function, 4 interactors involved in trafficking and secretion, 3 interactors involved in protein folding, 2 interactors involved in stress response, and 1 interactor in each of the following categories: cell wall assembly, cytoskeleton maintenance, nuclear function, protein degradation, protein modification and protein synthesis. Follow up experiments also showed that Pdr15p and Pdr18p play an important role in zinc homeostasis because deletion of these ABC transporters results in sensitivity to zinc shock.
|
590 |
Investigating the Mechanism of Programmed Nuclear Destruction during Yeast SporulationCheung, Sally Wai Ting 21 November 2012 (has links)
In the presence of a non-fermentable carbon source, nitrogen-starved diploid cells of the yeast Saccharomyces cerevisiae undergo a meiotic program called sporulation to form gametes called spores. While four spores are produced under standard laboratory sporulation conditions, spore number is known to be regulated by carbon availability: under carbon-depleted conditions, yeast cells package a portion of the four haploid meiotic nuclei into spores. Our lab has demonstrated that these unpackaged meiotic products undergo programmed nuclear destruction (PND) that is associated with apoptotic-like DNA fragmentation. Nevertheless, the mechanism that mediates PND remained to be elucidated. Here, I describe the execution of PND through an unusual form of autophagy that has not been documented previously in yeast. This form of autophagy is most similar to megaautophagy in plants and lysosomal membrane permeabilization in mammals. My results demonstrate further diversity in cell death programs in unicellular microbes that is potentially conserved across eukaryotes.
|
Page generated in 0.3261 seconds