• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 708
  • 290
  • 112
  • 97
  • 68
  • 40
  • 37
  • 33
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 10
  • Tagged with
  • 1782
  • 234
  • 226
  • 201
  • 178
  • 178
  • 170
  • 156
  • 147
  • 142
  • 122
  • 120
  • 111
  • 110
  • 94
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
601

Analysis of Telomere Healing of DNA Double-strand Breaks

Zhang, Wei 31 August 2012 (has links)
DNA double-strand breaks (DSBs) are a threat to cell survival and genome integrity. In addition to canonical DNA repair systems, DSBs can be converted to telomeres by telomerase. This process, herein termed telomere healing, endangers genome stability since it usually results in chromosome arm loss. Therefore, cells possess mechanisms that prevent the untimely action of telomerase on DSBs. In this work, I reported the completion of a transposon mutagenesis screen in budding yeast and the identification of five novel genes (RRD1, CIK1, CTF18, RTS1, and IRC6) critical for telomere healing. The characterization of Rrd1 led to the surprising finding that Rrd1 facilitates telomere healing at DSBs with little or no TG-rich sequences but not at DSBs with long tracts of telomeric sequences. Pph3, a PP4 phosphatase, acts in conjunction with Rrd1 to promote telomere healing. Conversely, Mec1, the ATR ortholog, phosphorylates Cdc13 on its S306 residue to suppress its accumulation at DSBs. Rrd1 and Pph3 oppose Cdc13 S306 phosphorylation and are necessary for the efficient accumulation of Cdc13 at DSBs. Next, I found that Cik1 and its kinesin partner Kar3 are both important for telomere healing. Importantly, Kar3 contributes to telomere healing through its motor function. In contrast to Rrd1, Kar3 contributes to telomere healing regardless of telomeric sequence lengths adjacent to the break. Finally, Cik1 and Kar3 have a general role in DNA repair and physically associate with DSBs, which is dependent on the process of anchoring DSBs to nuclear periphery. In conclusion, I identified a mechanism by which the ATR family of kinases enforces genome integrity, a phosphoregulatory loop that underscores the contribution of Cdc13 to the fate of DNA ends, and a kinesin complex critical for the spatial organization of DNA repair.
602

Functional Characterization of Members of a Clade of F-box Proteins in Arabidopsis thaliana

Turgeon, Paul Joseph 26 February 2009 (has links)
In Arabidopsis, the F-box gene family encodes a large number of proteins postulated to act as substrate selectors for proteasome-mediated protein degradation. Recent reports document the importance of F-box proteins in developmental and metabolic signaling. Our microarray analyses of inflorescences of the brevipedicellus(bp) mutant indicate several F-box proteins are upregulated, suggesting that BP represses these genes in wild type plants to condition normal inflorescence development. We undertook analyses to examine the function of these proteins and their contribution to the pleiotropic phenotypes of bp. Yeast-2-hybrid screens revealed that the F-box protein At1g80440 binds to phenylalanine ammonia lyase-1(PAL1), the gateway enzyme of phenylpropanoid metabolism. Transgenic lines driven by the 35S cauliflower mosaic virus were attained but could not be propagated, suggesting a fatal phenotype. BP driven F-box expression results in phyllotaxy defects, manifest as alterations in the emergence of inflorescence and floral meristems in the axils of some cauline leaves.
603

The Extensive and Condition-dependent Nature of Epistasis among Whole-genome Duplicates in Yeast

Musso, Gabriel 21 April 2010 (has links)
Immediately following a gene duplication event, if both gene copies are to be fixed into a species’ genome there is a period of enhanced selection acting on either one or both duplicates (paralogs) that results in some extent of functional divergence. However, as redundancy among extant duplicates is thought to confer genomic robustness, a consequent question is: how much functional overlap exists between duplicates that are retained over long spans of evolutionary time? To examine this issue I determined the extent of shared protein interactions and protein complex membership for paralogous gene pairs resulting from an ancient Whole Genome Duplication (WGD) event in yeast, finding retained functional overlap to be substantial among this group. Surprisingly however, I found paralogs existing within the same complex tended to maintain greater disparities in expression, suggesting the existence of previously proposed “transcriptional back-up” mechanisms. To test both for existence of such mechanisms and for any phenotypic manifestation of their shared functional overlap I surveyed for the presence of aggravating genetic interactions between 399 WGD-resultant paralog pairs. While these paralogs exhibited a high frequency (~30%) of epistasis, observed genetic interactions were not predictable based on protein interaction overlap. Further, exposure to a limited number of stressors confirmed that additional instances of epistasis were only observable under alternate conditions. As only a small number of stress conditions were tested, the high frequency of genetic interactions reported appears to be a minimum estimate of the true extent of epistasis among WGD paralogs, potentially explaining the lack of overlap with protein interaction data. As it is impossible to survey an infinite condition space, Synthetic Genetic Array (SGA) screening of yeast strains carrying double-deletions of paralog pairs was used to assess functional redundancy among a group of the remaining non-epistatic paralog pairs. The resulting interactions demonstrated functional relationships in non-epistatic paralogs only obvious upon ablation of both duplicates, suggesting that these interactions had initially been masked through redundant function. These findings ultimately suggest an advantage to retained functional overlap among whole genome duplicates that is capable of being stably maintained through millions of years of evolutionary time.
604

Proteomic and Molecular Genetic Investigation of Deubiquitinating Enzymes in the Budding Yeast Saccharomyces cerevisiae

Lam, Mandy Hiu Yi 23 February 2011 (has links)
Protein ubiquitination is essential for the proper functioning of many eukaryotic cellular processes. The cleavage of ubiquitin chains from ubiquitinated proteins is performed by deubiquitinating enzymes, of which there are 16 in the Ubp (ubiquitin specific protease) group in the budding yeast Saccharomyces cerevisiae. The goal of my thesis has been to examine the biological roles and molecular functions of these enzymes using a combination of proteomic and molecular genetic approaches. As part of a large collaborative effort, interacting protein partners of the Ubps were isolated through affinity purification of tagged proteins, followed by protein identification by mass spectrometry. Purification of tagged Ubp6 led to the identification of the 19S proteasome complex, along with a novel subunit, Sem1. As the human homologue of Sem1 was previously identified as being associated with a protein involved in the repair of DNA double-strand breaks, I examined the possible role of Sem1 in DNA damage repair. A deletion of Sem1 and other 19S subunits resulted in hypersensitivity to various DNA damaging drugs, implicating the 19S complex in the process of DNA repair. iii I also found that purified Ubp2 interacted stably with the ubiquitin ligase Rsp5 and the protein Rup1. UBP2 interacts genetically with RSP5, indicating a functional relationship, while Rup1 facilitates the physical tethering of Ubp2 to Rsp5. Using the uracil permease Fur4, a Rsp5 substrate, as a model reporter, I found that ubp2Δ cells exhibited a temporal stabilization of Fur4 at the plasma membrane following the induction of endocytosis, implicating Ubp2 in protein sorting, specifically at the multivesicular body. In order to understand the role of Ubp2, I examined the effect of Ubp2 on Rsp5 function. I found that Rsp5, similar to its mammalian homologues, is auto-ubiquitinated in vivo, and that Ubp2 is able to directly deubiquitinate Rsp5 in vitro. Moreover, the presence of a substrate or Rup1 both resulted in increased autoubiquitination, implying an auto-inhibitory mechanism of Rsp5 regulation. Taken together, the data presented in this thesis implicate deubiquitinating enzymes in interesting and varied roles in the cell, and suggest a novel mechanism for the modulation of Rsp5-dependent trafficking processes.
605

Technology Development for Next Generation Functional Analysis of Bioactive Molecules

Smith, Andrew Michael 11 January 2012 (has links)
The genome-wide HaploInsufficieny Profiling (HIPHOP) technique has been validated as a method to quantify the relative abundance of uniquely tagged yeast deletion strains using a microarray readout. The massive throughput of next generation sequencing presents a new technology for assessing HIPHOP profiles. I developed a new method called Barcode analysis by Sequencing (Bar-seq) that applies deep sequencing to genome-scale fitness. I show that Bar-seq outperforms the current benchmark barcode microarray assay in terms of both dynamic range and throughput. When applied to a complex genome-scale fitness assay, Bar-seq quantitatively identifies drug-targets, exceeding the performance of the microarray assay. I also established that Bar-seq is well suited to a multiplex format and provides a dramatic increase in throughput. I used the genome-wide HIPHOP assay and other functional genomics tools to explore the mechanisms underlying drug-drug synergies. Drug combination therapy, and synergistic combinations in particular, have several advantages over monotherapies. Synergistic drug combinations allow the dose of each agent to be reduced, often with the benefit of diminishing side effects while maintaining efficacy and decreasing the chances of drug resistance. I used my yeast model to identify synergistic drug combinations and found that inhibitors of ergosterol biosynthesis are highly synergistic with several agents, including those targeting other points within the same pathway. I also devised a method that enriches for synergistic interactions during screening of compound combinations. This new synergy prediction method can aid in the rapid identification of anti-proliferative combinations and can be readily applied to other organisms for further characterization and/or confirmation. Finally, I examined synergistic combination HIPHOP profiles and identified Gene Ontology enrichments that are combination-specific.
606

Analysis of Saccharomyces cerevisiae genetic background and mitochondrial DNA polymerase variants on maintenance of the mitochondrial genome.

Young, Matthew J. 10 September 2008 (has links)
The contribution of yeast strain background, specifically auxotrophic markers, to stability and fidelity of mtDNA replication was investigated. In summary, the ade2, his3delta200, and hap1 mutations have complex effects on mitochondrial functions, the severity of which appears to depend on other components in the genetic background of the strain. These results are important as many commonly used laboratory strains are related to the respiratory hampered S288c strain and are used for studies of orthologous human mutations associated with various mitochondrial diseases. These observations have added to our understanding of fungal mtDNA replication and have informed the mitochondrial community of problematic strains that need to be considered when using this model organism. The function of the yeast mitochondrial DNA polymerase (Mip1p) carboxyl-terminal extension (CTE) was investigated both in vivo and in vitro by genetically engineering various truncations of the CTE. The respiratory competence of mip1delta175 and mip1delta205 cells, in which Mip1p lacks the C-terminal 175 and 205 residues respectively, are indistinguishable from that of wild-type. In contrast, strains harbouring Mip1pdelta351, Mip1pdelta279, Mip1pdelta241, and Mip1pdelta222 rapidly lose mtDNA. At a low frequency, mip1delta216 cells grow poorly on glycerol. Fluorescence microscopy and Southern blot analysis revealed lower levels of mtDNA in these cells, and rapid loss of mtDNA during fermentative growth. Therefore, only the polymerase-proximal segment of the Mip1p CTE is necessary for mitochondrial function. To determine more precisely the defects associated with polymerase truncation variants, these proteins were overexpressed in yeast and used in a novel non-radioactive mtDNA polymerase assay. The threonine-661 and alanine-661 variants, shown by others to be responsible for the increased mtDNA mutability of various laboratory yeast strains at increased temperature, were examined in combination with CTE-truncations. These experiments suggest that exonuclease function is not effected in the alanine-661 variant at 37 degrees Celsius whereas polymerase activity is, and this higher relative level of exonuclease activity could be a contributing factor to mtDNA instability in S288c-related strains. Lastly, isogenic CTE truncation variants all have less DNA polymerase activity than their parental wild-type. Based on these results, several possible roles for the function of the CTE in mtDNA replication are suggested. / October 2008
607

Characterization of the role of Orc6 in the cell cycle of the budding yeast <em>Saccharomyces cerevisiae</em>

Semple, Jeffrey January 2006 (has links)
The heterohexameric origin recognition complex (ORC) acts as a scaffold for the G1 phase assembly of pre-replicative complexes. Only the Orc1-5 subunits are required for origin binding in budding yeast, yet Orc6 is an essential protein for cell proliferation. In comparison to other eukaryotic Orc6 proteins, budding yeast Orc6 appears to be quite divergent. Two-hybrid analysis revealed that Orc6 only weakly interacts with other ORC subunits. In this assay Orc6 showed a strong ability to self-associate, although the significance of this dimerization or multimerization remains unclear. Imaging of Orc6-eYFP revealed a punctate sub-nuclear localization pattern throughout the cell cycle, representing the first visualization of replication foci in live budding yeast cells. Orc6 was not detected at the site of division between mother and daughter cells, in contrast to observations from metazoans. An essential role for Orc6 in DNA replication was identified by depleting the protein before and during G1 phase. Surprisingly, Orc6 was required for entry into S phase after pre-replicative complex formation, in contrast to what has been observed for other ORC subunits. When Orc6 was depleted in late G1, Mcm2 and Mcm10 were displaced from chromatin, the efficiency of replication origin firing was severely compromised, and cells failed to progress through S phase. Depletion of Orc6 late in the cell cycle indicated that it was not required for mitosis or cytokinesis. However, Orc6 was shown to be associated with proteins involved in regulating these processes, suggesting that it may act as a signal to mark the completion of DNA replication and allow mitosis to commence.
608

Deconstructing the ribosome: specific interactions of a ribosomal RNA fragment with intact and fragmented L23 ribosomal protein

Roy, Poorna 29 March 2013 (has links)
The complexity of translation is a classical dilemma in the evolution of biological systems. Efficient translation requires coordination of complex, highly evolved RNAs and proteins; however, complex, highly evolved RNAs and proteins could not evolve without efficient translation system. At the heart of this complexity is the ribosome, itself a remarkably complex molecular machine. Our work illustrates the ribosome as deconstructed units of modification. Here we have deconstructed a segment of the ribosome to interacting RNA-protein units. L23 interacts in vivo with both Domain III (DIII) and Domain IIIcore (DIIIcore) independently of the fully assembled ribosome. This suggests that DIIIcore represents the functional rRNA unit in DIII-L23 interaction. Furthermore, L23peptide sustains binding function in vitro with both DIII and DIIIcore independently of any stabilizing effects from the globular domain of L23. The ability of L23peptide to form a 1:1 complex with both DIII and DIIIcore suggests that L23peptide is the functional rProtein unit in DIII-L23 interaction. We believe that our results will stimulate interest and discussions in the significance of 3D architecture and units of evolution in the ribosome. The ubiquity of the ribosome in cellular life prognosticates that our results impact and appeal to biologists, chemists, bioinformaticists, as well as the general scientific community.
609

Characterization of the role of Orc6 in the cell cycle of the budding yeast <em>Saccharomyces cerevisiae</em>

Semple, Jeffrey January 2006 (has links)
The heterohexameric origin recognition complex (ORC) acts as a scaffold for the G1 phase assembly of pre-replicative complexes. Only the Orc1-5 subunits are required for origin binding in budding yeast, yet Orc6 is an essential protein for cell proliferation. In comparison to other eukaryotic Orc6 proteins, budding yeast Orc6 appears to be quite divergent. Two-hybrid analysis revealed that Orc6 only weakly interacts with other ORC subunits. In this assay Orc6 showed a strong ability to self-associate, although the significance of this dimerization or multimerization remains unclear. Imaging of Orc6-eYFP revealed a punctate sub-nuclear localization pattern throughout the cell cycle, representing the first visualization of replication foci in live budding yeast cells. Orc6 was not detected at the site of division between mother and daughter cells, in contrast to observations from metazoans. An essential role for Orc6 in DNA replication was identified by depleting the protein before and during G1 phase. Surprisingly, Orc6 was required for entry into S phase after pre-replicative complex formation, in contrast to what has been observed for other ORC subunits. When Orc6 was depleted in late G1, Mcm2 and Mcm10 were displaced from chromatin, the efficiency of replication origin firing was severely compromised, and cells failed to progress through S phase. Depletion of Orc6 late in the cell cycle indicated that it was not required for mitosis or cytokinesis. However, Orc6 was shown to be associated with proteins involved in regulating these processes, suggesting that it may act as a signal to mark the completion of DNA replication and allow mitosis to commence.
610

Characterization of the two genes encoding cytoplasmic ribosomal protein L23a in <i>Arabidopsis thaliana</i>

McIntosh, Kerri Bryn 23 November 2005 (has links)
<p>RPL23a is one of the ~80 ribosomal proteins (r-proteins) of the cytoplasmic ribosome in the model plant <i>Arabidopsis thaliana</i>. The objectives of this research were to establish Arabidopsis RPL23a as a functional r-protein, characterize expression patterns for the two genes (RPL23aA and B) encoding RPL23a using reverse transcription PCR (RT-PCR), and identify regulatory elements controlling the expression of RPL23aA and B. Complementation of a yeast l25 mutant with AtRPL23aA demonstrated that AtRPL23aA can fulfill all the essential functions of L25 in vivo. A survey of various Arabidopsis tissue types showed that, while RPL23aA and B expression patterns both showed increased transcript abundance in mitotically active tissues, RPL23aB transcript levels were generally lower than those of RPL23aA and responded differently to abiotic stresses. In order to determine cis regulatory elements controlling RPL23aA and B expression, the 5 regulatory region (RR) of each gene was characterized via plants carrying a series of 5 RR deletion fragments upstream of a reporter. Transcript start sites and 5 untranslated regions (UTRs) for both RPL23aA and B were also characterized using primer extension, and transcripts from 5 deletion transgenics were amplified using RT-PCR. No correlation was observed between putative cis-acting elements and the expression patterns from the RPL23aA and B deletion transgenics, although a 102 bp sequence in the RPL23aB 5 RR was found to contain pollen-specific elements. 5 leader introns were found in each RPL23a gene, and amplification of transgene transcripts from deletion series plants indicated the importance of post-transcriptional and translational regulation in RPL23aA and B expression. This thesis work is the first demonstration of a plant RPL23a protein as a functional member of the L23/L25 (L23p) conserved r-protein family, and is one of the few in-depth studies of the regulation of r-protein genes in plants. While the majority of previous research on plant r-protein gene expression has focused solely on transcript levels, I show herein that post-transcriptional mechanisms have a critical role in regulating these genes, and thus plant r-protein genes more strongly resemble their mammalian counterparts than those of yeast in terms of structure and regulation.

Page generated in 0.0417 seconds