1 |
Effect of oxidation on the optical properties of Zn3N2 powdersAlimohammadi, Helaleh 08 December 2017 (has links)
Zinc nitride is currently attracting research interest because of its potential for novel electronic and photonic properties. In this thesis the optical properties of Zn3N2 powders have been investigated by photoluminescence (PL) and diffuse reflectance spectroscopy (DR) measurements. The micro structure and composition of zinc nitride were assessed by scanning electron microscopy (SEM) and powder X-ray diffraction (PXRD). Measurements of PL, PXRD and DR were carried out on zinc nitride powder samples with different oxygen-nitrogen (O/N) ratios. Photoluminescence spectroscopy of the zinc nitride powder samples allows us to find the optical bandgap of the samples. To the best of our knowledge, this is the first report on the low temperature photoluminescence of zinc nitride powder. This showed us how the band gap energy depends on temperature. The diffuse reflectance measurement let us determine a direct bandgap of 1.12eV for Zn3N2 powders and the PL measurements also demonstrated emission at the same photon energy. In this work, the effect of oxidation on the optical properties has been investigated. The surface oxidation of Zn3N2 powders and the oxygen-nitrogen (O/N) ratio were detected through PXRD scans. Our measurement show that the optical bandgap energy shifts to lower energy due to the oxygen incorporation. The reduction of the Zn3N2 bandgap by oxygen incorporation can be explained by a resonant interaction between the extended states of the conduction band of Zn3N2 and localized oxygen states near the conduction band edge. Additionally, the thermal nitriding process was carried out on the oxidized Zn3N2 powders to vary the O/N ratio which increased the bandgap energy. From our result, the optical bandgap of the Zn3N2 powders is estimated to be ~1.2 eV which decreases by small amount of oxygen contamination due to exposure to air. Powder XRD measurements of thermal oxidation of Zn3N2 indicated that the oxidation of these powders is slow at room temperature. / Graduate
|
2 |
The Effects of Heat Treatments on Zinc Nitride Thin Films and the PN Junction CharacterizationLi, Cheng-Hua 07 September 2009 (has links)
There are many intensive researches for zinc compounds due to their wide band gaps and potential applications in visible and UV optoelectronic technologies. Zinc nitride is a n-type semiconductor material having a direct band gap, and is not widely studied. Previous papers reported that zinc nitride is a n-type semiconductor having low resistivity and high electron mobility. Its band gap varies from 1.23 eV to 3.2 eV depending on the process condition. In this work, we successfully fabricated zinc nitride p-n junction by heat treatment on zinc nitride films. The threshold voltage of p-n junction is about 1 V. The Zinc nitride films were prepared by reactive RF magnetron sputtering. The as-grown zinc nitride thin film is a n-type material. It is found that the film treated at 300¢J for 3 hours can be changed to a p-type material. The zinc nitride has a very low resistance (2.2¡Ñ10-2 £[-cm) and high carrier concentration (3.88¡Ñ1019 cm-3) after the heat treatment. The optical band gap of zinc nitride was determined as a direct band gap varying from 1.1 eV to 1.6 eV according to the temperature of heat treatment. The zinc nitride was successfully prepared with various electrical characteristics and band gaps by controlling the temperature of heat treatment.
|
3 |
Epitaxial growth and optical properties of Mg3N2, Zn3N2, and alloysWu, Peng 24 April 2019 (has links)
Zinc nitride and magnesium nitride are examples of the relatively unexplored II3V2 group of semiconductor materials. These materials have potential applications in the electronics industry due to their excellent optical and electrical properties. This study mainly focuses on the growth and characterization of the new semiconductor materials: zinc nitride, magnesium nitride, and their alloys.
The (100) oriented zinc nitride thin films were grown on both (110) sapphire substrates and (100) MgO substrates by plasma-assisted molecular beam epitaxy (MBE). The typical growth rate is in the range of 0.02-0.06 nm/s, the growth temperature is in the range of 140-180 oC, and background nitrogen pressure is around 10-5 Torr. The growth process was monitored by in-situ: reflection high energy electron diffraction (RHEED) and optical reflectivity. The RHEED and X-ray diffraction patterns of the zinc nitride indicate that the film is a single crystal material. The in-situ optical reflectivity pattern of the zinc nitride shows interference oscillations, and these oscillations are damped out as the thickness increases. The reflectivity as a function of time was accurately simulated by an optical equation. The optical constants of the thin films, the growth rate, and the thickness were derived from the simulation of the in-situ reflectance. The X-ray diffraction shows that (400) oriented zinc nitride thin films were grown on both A-plane (110) sapphire substrates and (100) MgO substrates. Optical transmittance measurements were performed on the zinc nitride thin films. The spectrum of the zinc nitride transmittance indicates that zinc nitride has a high optical absorption in the visible light region. The absorption coefficient was calculated from the transmittance spectrum, and the optical band gap of the zinc nitride thin film was found to be 1.25-1.28 eV. Ellipsometry measurements suggested that the refractive index of zinc nitride is 2.3-2.7, and the extinction coefficient is ~0.5-0.7 in the energy range 1.5-3.0 eV. The electron transport measurement shows that the single crystal zinc nitride has a mobility as high as 395 cm2 /Vs.
A plasma-assisted MBE system was employed for magnesium nitride growth. The growth temperature was in the range of 300-350 oC. RHEED and laser reflectivity were employed during growth. The RHEED and X-ray diffraction patterns indicated that the epilayers are single crystal films. The optical laser reflectivity was well fitted by a modified optical equation. The optical constants and growth rate were derived from the simulation. X-ray diffraction showed that (400) oriented single crystal magnesium nitride films were grown on (100) MgO substrates. The optical transmittance spectra show that the magnesium nitride has a high absorption below 500 nm. The calculated absorption coefficient is as high as 4x10-4 cm-1 in the range of ~2.5-3.0 eV. The optical band gap was estimated to be ~2.5 eV. Ellipsometry measurements showed that the refractive index of the magnesium nitride is 2.3-2.75 and the extinction coefficient is less than 0.3 in the energy range of 1.5-3.0 eV.
Zinc nitride-magnesium nitride (Zn3-3xMg3xN2) alloys were grown on (100) YSZ substrates by sputtering. The bandgap ranged from 1.2 eV to 2.1 eV for Mg content x in the 0-0.59 range. One film with a bandgap of ~1.4 eV and Mg content of 0.18 has the relatively high mobility of 47 cm2 /Vs which was expected for photovoltaics application. / Graduate
|
4 |
Reactive Sputtering Deposition and Characterization of Zinc Nitride and Oxy-Nitride Films for Electronic and Photovoltaic ApplicationsJiang, Nanke 11 July 2013 (has links)
No description available.
|
5 |
Filmes de óxido de zinco e nitreto de zinco depositados por magnetron sputtering com diferentes pressões de argônio, oxigênio e nitrogênio. / Zinc oxide and zinc nitride thin films deposited by magnetron sputtering with various argon, oxygen and nitrogen pressures.Damiani, Larissa Rodrigues 28 January 2015 (has links)
O óxido de zinco é um material semicondutor que apresenta alta transparência óptica no espectro visível, alta energia de ligação de éxcitons e piezoeletricidade. Por suas propriedades, ele é utilizado na área de sensores, eletrodos transparentes e dispositivos optoeletrônicos. No entanto, sua utilização ainda é limitada pela dificuldade de obtenção de condutividade tipo p, cujo principal dopante é o nitrogênio, devido à assimetria de dopagem ocasionada por defeitos intrínsecos do material, dopagem em valências diferentes das esperadas e formação de níveis de aceitadores profundos na banda proibida. A aplicação em dispositivos piezoelétricos também exige alta resistividade e ótimas propriedades cristalinas. Muitos processos de deposição estabelecidos hoje ainda utilizam altas temperaturas, o que impede sua deposição sobre superfícies ou substratos sensíveis a altas temperaturas. O objetivo deste trabalho é desenvolver técnicas de deposição de filmes de ZnO, principalmente em baixas temperaturas ( 100°C), pelo método de magnetron sputtering de rádio frequência, para avaliar a influência dos gases de processo nas características estruturais, estequiométricas, elétricas e ópticas dos filmes. Para isso, foram obtidos filmes utilizando pressão total de argônio, e pressões parciais de argônio e oxigênio e argônio e nitrogênio, utilizando alvo cerâmico de óxido de zinco ou alvo metálico de zinco. Para alvo de ZnO, filmes com condutividade tipo n foram obtidos em ambiente de argônio, em condições que geraram deficiências de oxigênio. Filmes altamente resistivos foram obtidos com a utilização de pressão parcial de oxigênio no gás de processo, em condições que resultaram em filmes estequiométricos, inclusive com condutividade tipo p. Condutividade tipo p mais alta foi observada, apenas por ponta quente, para uma amostra obtida em argônio logo após a utilização de nitrogênio na câmara de processo, que provavelmente sofreu influência da dopagem não intencional do cobre, que foi identificado como um contaminante do processo devido à estrutura da câmara. Para alvo de Zn, observou-se a formação de nitreto de zinco, que demonstrou alta capacidade de oxidação em ambiente atmosférico, e portanto, transforma-se naturalmente ao longo do tempo ou por processos de oxidação térmica em ZnO dopado com nitrogênio. Filmes de ZnO produzidos a partir de nitreto de zinco foram os únicos dos testados que apresentaram fotoluminescência característica do ZnO, mesmo para processos onde não houve aquecimento intencional. / Zinc oxide is a multifunctional semiconductor, which presents high optical transparency in the visible range, high exciton binding energy and piezoelectricity. Due to its properties, ZnO is used in several areas, such as sensors, transparent electrodes and optoelectronics. However, its usage is still limited by the lack of p-type conductivity, which is very difficult to achieve because of intrinsic material defects, unwanted valence states of doping elements and formation of deep acceptor levels. Piezoelectric devices also demand high electrical resistivity and excellent crystallographic properties. Many current deposition processes still apply high temperatures, preventing material deposition onto temperature sensitive substrates and surfaces. The main goal of this investigation is to develop low temperature ( 100°C) deposition techniques by radio frequency magnetron sputtering, to evaluate the influence of process gases in structural, stoichiometric, electrical and optical properties. Thin films were obtained using either pure argon, argon and oxygen or argon and nitrogen partial pressures, by sputtering ceramic ZnO or metallic Zn targets. For ZnO target, n-type conductivity was achieved in argon environment, by creating oxygen deficient films. High resistivity was observed by using oxygen partial pressure, resulting in stoichiometric material and changing carrier type from electrons to holes. Higher p-type conductivity was observed, only by Seebeck measurement, for a nonintentionally heavily doped sample, as there was copper originating from the deposition chamber. For Zn target, zinc nitride formation was observed, showing high capability of transforming itself into nitrogen-doped ZnO by air exposure or thermal annealing. ZnO films produced from zinc nitride were the only ones that exhibited photoluminescence, even when there was no intentional heating involved.
|
6 |
Filmes de óxido de zinco e nitreto de zinco depositados por magnetron sputtering com diferentes pressões de argônio, oxigênio e nitrogênio. / Zinc oxide and zinc nitride thin films deposited by magnetron sputtering with various argon, oxygen and nitrogen pressures.Larissa Rodrigues Damiani 28 January 2015 (has links)
O óxido de zinco é um material semicondutor que apresenta alta transparência óptica no espectro visível, alta energia de ligação de éxcitons e piezoeletricidade. Por suas propriedades, ele é utilizado na área de sensores, eletrodos transparentes e dispositivos optoeletrônicos. No entanto, sua utilização ainda é limitada pela dificuldade de obtenção de condutividade tipo p, cujo principal dopante é o nitrogênio, devido à assimetria de dopagem ocasionada por defeitos intrínsecos do material, dopagem em valências diferentes das esperadas e formação de níveis de aceitadores profundos na banda proibida. A aplicação em dispositivos piezoelétricos também exige alta resistividade e ótimas propriedades cristalinas. Muitos processos de deposição estabelecidos hoje ainda utilizam altas temperaturas, o que impede sua deposição sobre superfícies ou substratos sensíveis a altas temperaturas. O objetivo deste trabalho é desenvolver técnicas de deposição de filmes de ZnO, principalmente em baixas temperaturas ( 100°C), pelo método de magnetron sputtering de rádio frequência, para avaliar a influência dos gases de processo nas características estruturais, estequiométricas, elétricas e ópticas dos filmes. Para isso, foram obtidos filmes utilizando pressão total de argônio, e pressões parciais de argônio e oxigênio e argônio e nitrogênio, utilizando alvo cerâmico de óxido de zinco ou alvo metálico de zinco. Para alvo de ZnO, filmes com condutividade tipo n foram obtidos em ambiente de argônio, em condições que geraram deficiências de oxigênio. Filmes altamente resistivos foram obtidos com a utilização de pressão parcial de oxigênio no gás de processo, em condições que resultaram em filmes estequiométricos, inclusive com condutividade tipo p. Condutividade tipo p mais alta foi observada, apenas por ponta quente, para uma amostra obtida em argônio logo após a utilização de nitrogênio na câmara de processo, que provavelmente sofreu influência da dopagem não intencional do cobre, que foi identificado como um contaminante do processo devido à estrutura da câmara. Para alvo de Zn, observou-se a formação de nitreto de zinco, que demonstrou alta capacidade de oxidação em ambiente atmosférico, e portanto, transforma-se naturalmente ao longo do tempo ou por processos de oxidação térmica em ZnO dopado com nitrogênio. Filmes de ZnO produzidos a partir de nitreto de zinco foram os únicos dos testados que apresentaram fotoluminescência característica do ZnO, mesmo para processos onde não houve aquecimento intencional. / Zinc oxide is a multifunctional semiconductor, which presents high optical transparency in the visible range, high exciton binding energy and piezoelectricity. Due to its properties, ZnO is used in several areas, such as sensors, transparent electrodes and optoelectronics. However, its usage is still limited by the lack of p-type conductivity, which is very difficult to achieve because of intrinsic material defects, unwanted valence states of doping elements and formation of deep acceptor levels. Piezoelectric devices also demand high electrical resistivity and excellent crystallographic properties. Many current deposition processes still apply high temperatures, preventing material deposition onto temperature sensitive substrates and surfaces. The main goal of this investigation is to develop low temperature ( 100°C) deposition techniques by radio frequency magnetron sputtering, to evaluate the influence of process gases in structural, stoichiometric, electrical and optical properties. Thin films were obtained using either pure argon, argon and oxygen or argon and nitrogen partial pressures, by sputtering ceramic ZnO or metallic Zn targets. For ZnO target, n-type conductivity was achieved in argon environment, by creating oxygen deficient films. High resistivity was observed by using oxygen partial pressure, resulting in stoichiometric material and changing carrier type from electrons to holes. Higher p-type conductivity was observed, only by Seebeck measurement, for a nonintentionally heavily doped sample, as there was copper originating from the deposition chamber. For Zn target, zinc nitride formation was observed, showing high capability of transforming itself into nitrogen-doped ZnO by air exposure or thermal annealing. ZnO films produced from zinc nitride were the only ones that exhibited photoluminescence, even when there was no intentional heating involved.
|
Page generated in 0.042 seconds