• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 11
  • 8
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 59
  • 35
  • 31
  • 13
  • 13
  • 13
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Some studies in bromo-and chloro-zirconate chemistry

Buscaglione, I. January 1988 (has links)
No description available.
2

The ferroelectric-ferroelastic twinning in lead zirconate titanate ceramics

Ciou, Ci-Jin 06 August 2010 (has links)
The composition dependent variation of ferroelectric domain structure in lead zirconate titanate (Pb(Zr0.52Ti0.48)O3) ceramics have been investigated within the morphotropic phase boundary (MPB). Tetragonal phase in sintered samples were identified via X-ray diffractometry (XRD). Representative microstructures of ferroelectric domains were examined using scanning electron microscopy (SEM). £\-boundaries, £_- boundaries, and £k-boundaries were analyzed from the contrast of extreme fringe patterns by transmission electron microscopy (TEM). Twin planes for 90o domains lie in {011) and for 180o domains lie in {100) and {220) were determined by selected area diffraction patterns (SADP). Traditional contrast analysis was adopted for determining displacement vectors (R). 90o domains with R = £`[011] and 180o domains with R = n[001]. Convergent beam electron diffraction (CBED) was performed to identify crystalline phases of different domain configurations. By examined the symmetry along the Z = [100], [110], and [111] zone axis, both £_-boundaries and £k-boundaries are tetragonal phase.
3

Studies of mixed-metal oxides

Din, Sakina January 1998 (has links)
No description available.
4

Preparation and characterization of doped lead zirconate titanate Pb(Zrx̳Ti1̳-x)O3̳ films /

Chang, Jhing-Fang, January 1992 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1992. / Vita. "x̳", "1̳-x", and "3̳" are subscripts. Abstract. Includes bibliographical references (leaves 120-128). Also available via the Internet.
5

Ferroelectric Thin Films for High Density Non-volatile Memories

Song, Yoon-Jong 21 August 1998 (has links)
Ferroelectric random access memories (FRAM) are considered as future memories due to high speed, low cost, low power, excellent radiation hardness, nonvolatility, and good compatibility with the existing integrated circuit (IC) technology. The non-volatile FRAM devices are divided into two categories, based on reading technique: destructive readout (DRO) FRAM and non-destructive readout (NDRO) FRAM. Lead zirconate titanate (PZT) is recently considered as one of the most promising materials for DRO FRAM devices due to its excellent ferroelectric properties. There are remarkable advances in the applications of PZT thin films, but the direct integration into high density CMOS devices is restricted by high processing temperatures. Hence, it is desirable to lower processing temperature and develop novel high temperature electrode-barrier layers for achieving high density DRO FRAM devices. The NDRO FRAM devices have been developed mainly using metal-ferroelectric-semiconductor (MFS) and metal-ferroelectric-metal-insulator-semiconductor (MFMIS) structure. This devices use the remanent polarization of ferroelectric films to control the surface conductivity of a silicon substrate. The problem of the NDRO FRAM is that the actual electric field applied to ferroelectric films is very small compared to the external electric field, because of the large depolarization field in the MFS structure and the high capacitance ratio of ferroelectric capacitor and SiO2 capacitor in series in the MFMIS structure. Since the typical ferroelectric films show very high dielectric constant over 400, it is desired to develop ferroelectric films with low dielectric constant and low coercive electric field. This research is primarily focused on developing low temperature processing and high temperature electrode-barrier layers for DRO FRAM application, and exploiting novel ferroelectric materials for NDRO FRAM application. The low temperature processing was achieved by a novel sol-gel processing, which takes advantage of in-situ electrode template layer, rapid heating-treatment without pyrolysis step, and molecularly modified precursors. The PZT films with various composition were also investigated as a function of Ti content. In order to study the integration issues for these PZT films, a substrate was constructed as Pt/TiN/TiSi₂/poly-Si, which represents a scheme of capacitor in high density DRO FRAM devices. The ferroelectric films were incorporated into the substrate, and their ferroelectric properties were investigated as a function of annealing temperature. Excellent ferroelectric properties were observed for the thin films processed at a low temperature of 500 °C as contacting between top Pt and bottom polysilicon. The other approach we have taken to overcome the integration problems in high density DRO FRAM devices is to develop high temperature electrode barrier layers. In this research, Pt/IrO2/Ir hybrid layers were prepared on poly-Si substrate as high temperature electrode-barriers. The PZT films fabricated on the Pt/IrO₂/Ir/poly-Si substrates exhibited good ferroelectric properties and outstanding fatigue properties after high temperature processing. It was observed from Auger electron spectroscopy (AES) profiles that the hybrid oxide electrode minimized fatigue problem by reducing the oxygen vacancies entrapment at the electrode/ferroelectric interfaces. This results indicated that Pt/IrO₂/Ir high temperature electrode-barrier layers promise to solve major problems of PZT integration into high density DRO memory devices. For the NDRO FRAM devices, Sr₂Nb₂O₇ and La₂Ti₂O₇ thin films were prepared on Pt-coated silicon, Si(100), and Pt/IrO₂/SiO₂/Si substrates by metalorganic deposition (MOD) technique. The Sr₂Nb₂O₇ and La₂Ti₂O₇ thin films showed the dielectric constant values of 48 and 46, respectively. However, no ferroelectricity was observed at room temperature, which might be attributed to extremely small grains. Extensive studies on preparation and properties of Sr₂(Ta<sub>1-x</sub>Nb<sub>x</sub>)O₇ (STN) both in bulk and thin film form were carried out as a function of composition. The STN films exhibited small dielectric constant of around 46, irrespective of the composition. / Ph. D.
6

Novel Inorganic Sorbent for High Temperature Carbon Dioxide Separation

Xiong, Rentian 04 September 2003 (has links)
No description available.
7

Ferroelectric and ferroelastic phenomena in PZT thin films

Garcia Melendrez, Jose Angel January 2014 (has links)
No description available.
8

Nanoparticle synthesis via thin film ferroelectric templates : surface interactions and effects

Jones, Paul M. January 2008 (has links)
An investigation into the processes taking place at the surface interface of ferroelectric Pb(Zr1-x,Tix)O3 immersed in metal salt solution under ultraviolet illumination is presented. The semiconducting and switchable dipolar nature of this material allows the spatial separation and control of photo-induced reduction and oxidation across its surface interface. These properties can be of application in novel techniques such as the controlled growth of metallic nanoparticles across specific polar domains. 70nm thick Pb(Zr0.3,Ti0.7)O3 samples, PZT(30/70), are manufactured using the sol gel methodology, two crystallographic orientations being produced. The orientation being controlled by the substrate used; Si was used for [111] orientation and MgO for [100]. The initial work with wideband ultraviolet light shows that the reduction and growth of silver on the PZT surface is greatly influenced by the structure of the film. The crystallographic orientation of the film affects metal deposition such that on [111] films the metal deposits only on positive domains, where as the [100] films experience deposition on both positive and negative domains. This is shown to be due to the difference in width of the space charge region, Δw = 4.4nm, between the [111] and [100] samples so that the negative domain on [100] samples have 10 19 times higher chance of electron tunnelling compared to the [111]. It is also shown that grain boundaries have the greatest effect on the growth of metal, with a metal cluster growth rate 51 times faster than elsewhere on the surface. This increased rate of growth is due to the effect a grain boundary has on the surrounding area, the energy band bending at the boundary attracting charge carriers from the grains around it. The interface types ranked from greatest to lowest influence are grain boundaries, positive domains, domain boundaries and finally interphase boundaries.ii It is shown that the stern layer, strongly adsorbed charged ions of opposite sign to the surface charge, at the PZT/solution interface act as an insulating layer to metal reduction. The accumulation of photoexcited charge carriers at points along grain boundaries causes the surface potential gradient to alter and allows metal reduction and thus clusters to nucleate. The energy required to cause this variation is investigated by use of narrow band, 5nm bandwidth, ultraviolet. For energy from 4.4eV to 5 eV, it is found there is an increase in the average silver cluster cross sectional area by a ratio of ca 1.6 to 1 for both the [111] and [100] orientations of PZT. Finally it is shown that the type of metal salt used in the photochemical process affects the type of reaction that takes place at the sample surface. For a cation to reduce on positive domains its reduction potential needs to be below the bottom edge of the conduction band of PZT. Chloride salts, that sit above the conduction band, cause decomposition of the negative domains. Use is made of these effects to find the position of the bottom of the conduction band for PZT. It is found that across similar [111] PZT samples FeCl2 can both reduce on positive domains and decompose negative domains, this puts the bottom of the conduction band for PZT(30/70) between 4.06 and 4.36 eV from vacuum. It is also discovered that the type of anion affects the decomposition of the negative domains. Nitrate salts with cations above the conduction band cause no decomposition whereas chlorides do. The decomposition is shown to be the loss of Pb from the negative surface.
9

Doping Behavior of Cations in Perovskite-type Oxide Materials for Protonic Ceramic Fuel Cells / プロトン伝導セラミック型燃料電池に用いるペロブスカイト型酸化物材料における陽イオンのドーピング挙動

Han, Donglin 26 September 2011 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第16396号 / 工博第3477号 / 新制||工||1525(附属図書館) / 29027 / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 田中 功, 教授 乾 晴行, 准教授 宇田 哲也 / 学位規則第4条第1項該当
10

The improvement of thermal and mechanical properties of La2Zr2O7-based pyrochlores as high temperature thermal barrier coatings

Wang, Yanfei January 2013 (has links)
To fully exploit the strengths of La2Zr2O7 pyroclores and promote them as a next-generation thermal barrier coating (TBC), the improvements of their thermally insulating property and fracture toughness are studied in this thesis. A strong phonon scattering source, rattlers, is found in Y3+-doped La2Zr2O7 pyrochlores. Rattlers dramatically flatten k (thermal conductivity)-T curves, or even make k approach the amorphous limit. The presence of rattlers is strongly dependent on (1) oversized atomic cages that are formed in pyrochlores; and (2) the occupation of smaller guest ions in those oversized cages. To maximize the rattling effect, In3+/Sc3+ ions that are much smaller than Y3+ are introduced to the La2Zr2O7 lattice. As envisaged, the smaller ions in the oversized lattice voids make k glass-like at a much lower doping content. Nevertheless, they are still not effective in reducing the high temperature plateau kmin. Instead, oxygen vacancies are very effective in reducing kmin, because they generate an electrostatic repulsion force among cations surrounding them, resulting in stronger lattice anharmonicity and weaker bonds. The plateau kmin is reduced dramatically by the filling of the B-sites in La2Zr2O7 with a 21% larger (and 50% heavier) Ce4+ guest ion rather than a 96% heavier (but similar-sized) Hf4+ ion, suggesting that a large absolute size of substitutional atoms is more effective in reducing kmin than a heavy absolute mass. This is because: (1) kmin is proportional to (E/M)0.5 (where E is the elastic modulus and M is the average atomic mass); (2) a larger size of guest ions tends to produce a weaker ionic bond and consequently, a lower E; and (3) the changing extent of E by introducing larger guest ions is much greater than that of M induced by adding heavier ones. Lastly, the fracture toughness (KIc) has been increased by dispersing the tetragonal 3 mol% Y2O3-stabilized zirconia (t-3YSZ) particulates in the La2Zr2O7 (LZ) matrix. The tendency of the dispersive t-3YSZ second phases transforming to monoclinic (m) phases strongly depends on the volume fraction introduced. For samples made from equilibrium route, they are toughened by phase transformations within the dispersive t-3YSZ second phases and a crack shielding effect arising from the residual compressive stress within the LZ matrix. An anticipated increase of KIc from ferroelastic toughening together with the residual compressive stress toughening highlights a potential to improve coating durability by depositing t’-3YSZ/LZ composite TBCs by the non-equilibrium route.

Page generated in 0.0609 seconds