1 |
Modelling large scale ocean circulation: the role of mixing location and meridional pressure gradients for the Atlantic overturning dynamicsGriesel, Alexa. January 2005 (has links) (PDF)
Potsdam, Univ., Diss., 2005.
|
2 |
Untersuchungen zum globalen Spurenstofftransport und Stratosphären-Troposphären-Austausch mit dem Lagrangeschen Modell ECHAM4-ATTILAReithmeier, Christian. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2001--München.
|
3 |
Aspects of ocean circulation with finite element modellingHarig, Sven. Unknown Date (has links) (PDF)
University, Diss., 2004--Bremen.
|
4 |
Geographically versus dynamically defined boundary layer cloud regimes and their use to evaluate general circulation model cloud parameterizationsNam, Christine C. W., Quaas, Johannes 25 August 2015 (has links) (PDF)
Regimes of tropical low-level clouds are commonly identified according to large-scale subsidence and lower tropospheric
stability (LTS). This definition alone is insufficient for the distinction between regimes and limits the comparison of low-level clouds from CloudSat radar observations and the ECHAM5 GCM run with the COSP radar simulator. Comparisons of CloudSat radar cloud altitude-reflectivity histograms for stratocumulus and shallow cumulus regimes,
as defined above, show nearly identical reflectivity profiles,
because the distinction between the two regimes is dependent
upon atmospheric stability below 700 hPa and observations above 1.5 km. Regional subsets, near California and Hawaii, for example, have large differences in reflectivity profiles than the dynamically defined domain; indicating different reflectivity profiles exist under a given
large-scale environment. Regional subsets are better for the
evaluation of low-level clouds in CloudSat and ECHAM5 as there is less contamination between 2.5 km and 7.5 km from precipitating hydrometeors which obscured cloud reflectivities.
|
5 |
Incorporating the subgrid-scale variability of clouds in the autoconversion parameterization using a PDF-schemeWeber, Torsten, Quaas, Johannes 30 October 2015 (has links) (PDF)
An investigation of the impact of the subgrid-scale variability of cloud liquid water on the autoconversion process as parameterized in a general circulation model is presented in this paper. For this purpose, a prognostic statistical probability density distribution (PDF) of the subgrid scale variability of cloud water is incorporated in a continuous autoconversion parameterization. Thus, the revised autoconversion rate is calculated by an integral of the autoconversion equation over the PDF of total water
mixing ratio from the saturation vapor mixing ratio to the maximum of total water mixing ratio. An evaluation of the new autoconversion parameterization is carried out by means of one year simulations with the ECHAM5 climate model. The results indicate that the new autoconversion scheme causes an increase of the frequency of occurrence of high autoconversion rates and a decrease of low ones compared to the
original scheme. This expected result is due to the emphasis on areas of high cloud liquid water in the new approach, and the non-linearity of the autoconversion with respect to liquid water mixing ratio. A similar trend as in the autoconversion is observed in the accretion process resulting from the coupling of both processes. As a consequence of the altered autoconversion, large-scale surface precipitation also shows a shift of occurrence from lower to higher rates. The vertically integrated cloud
liquid water estimated by the model shows slight improvements compared to satellite data. Most importantly, the artificial tuning factor for autoconversion in the continuous parameterization could be reduced by almost an order of magnitude using the revised parameterization.
|
6 |
The representation of cloud cover in atmospheric general circulation modelsJakob, Christian. Unknown Date (has links)
University, Diss., 2001--München.
|
7 |
The North Atlantic Ocean in the greenhouse overturning response and sensitivities /Schweckendiek, Ulf. Unknown Date (has links) (PDF)
University, Diss., 2003--Kiel.
|
8 |
Gravity wave flux modulation by planetary waves in a circulation modelJacobi, Ch., Fröhlich, K., Pogoreltsev, A. 27 July 2017 (has links)
Mit Hilfe eines Zirkulationsmodells der mittleren Atmosphäre wird die Ausbreitung der Quasi-Zwei-Tage-Welle simuliert. Das Modell verfügt über eine aktuelle Schwerewellenparametrisierung und ermöglicht daher die detaillierte Beschreibung der Wechselwirkung planetarer Wellen mit Schwerewellen. Bei Anwesenheit der Quasi-Zwei-Tage-Welle wird der Schwerewellenfluss mit der Periode von zwei Tagen und der räumlichen Struktur der Quasi- Zwei-Tage-Welle moduliert. Modellergebnisse zeigen, dass sich die Quasi-Zwei-Tage-Welle nicht gut in die untere Thermosphäre ausbreitet. Phasenvergleiche zwischen Quasi-Zwei-Tage-Welle und Divergenz des Eliassen-Palm-Flusses der Schwerewellen zeigen, dass dies eine Folge sekundärer Anregung der Quasi-Zwei-Tage-Welle durch brechende Schwerewellen ist, die außer Phase mit der Originalwelle erfolgt.
|
9 |
Evaluation of boundary layer cloud parameterizations in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite dataNam, Christine C. W., Quaas, Johannes, Neggers, Roel, Siegenthaler-Le Drian, Colombe, Isotta, Francesco 24 August 2015 (has links) (PDF)
Three different boundary layer cloud models are incorporated into the ECHAM5 general circulation model (GCM) and compared to CloudSat and CALIPSO satellite observations. The first boundary layer model builds upon the standard Tiedtke (1989) parameterization for shallow convection with an adapted convective trigger; the second is a bulk parameterization of the effects of transient shallow cumulus clouds;
and lastly the Dual Mass Flux (DMF) scheme adjusted to better represent shallow convection. The three schemes improved (Sub)Tropical oceanic low-level cloud cover, however, the fraction of low-level cloud cover remains underestimated compared to CALIPSO observations. The representation of precipitation was improved by all schemes as they reduced the frequency of light intensity events <0.01 mm d-1, which were found to dominate the radar reflectivity histograms as well as be the greatest source of differences
between ECHAM5 and CloudSat radar reflectivity histograms. For both lidar and radar diagnostics, the differences amongst the schemes are smaller than the differences compared to observations. While the DMF
approach remains experimental, as its top-of-atmosphere radiative balance has not been retuned, it shows the most promise in producing nonprecipitating boundary layer clouds. With its internally consistent
boundary layer scheme that uses the same bimodal joint distribution with a diffusive and an updraft component for clouds and turbulent transport, the ECHAM5_DMF produces the most realistic boundary layer depth as indicated by the cloud field. In addition, it reduced the frequency of large-scale precipitation intensities of <0.01 mm d-1 the greatest.
|
10 |
Scale dependency of total water variance and its implication for cloud parameterizationsSchemann, Vera, Stevens, Bjorn, Grützun, Verena, Quaas, Johannes 25 August 2015 (has links) (PDF)
The scale dependency of variance of total water mixing ratio is explored by analyzing data from a general circulation model (GCM), a numerical weather prediction model (NWP), and large-eddy simulations (LESs). For clarification, direct numerical simulation (DNS) data are additionally included, but the focus is placed on defining a general scaling behavior for scales ranging from global down to cloud resolving. For this, appropriate power-law exponents are determined by calculating and approximating the power density spectrum.
The large-scale models (GCM and NWP) show a consistent scaling with a power-law exponent of approximately 22. For the high-resolution LESs, the slope of the power density spectrum shows evidence of being somewhat steeper, although the estimates are more uncertain. Also the transition between resolved and parameterized scales in a current GCM is investigated. Neither a spectral gap nor a strong scale break is found, but a weak scale break at high wavenumbers cannot be excluded. The evaluation of the parameterized total water variance of a state-of-the-art statistical scheme shows that the scale dependency is underestimated by this parameterization. This study and the discovered general scaling behavior emphasize the need for
a development of scale-dependent parameterizations.
|
Page generated in 0.1133 seconds