Eftersom mental ohälsa stiger i samhället och forskningen inte har ett tydligt svar så har vi i detta projekt formulerat en egen hypotes om varför vi ser den här trenden. Eftersom nyhetstjänster tjänar på att publicera negativa artiklar så leder det till att fler konsumerar negativa nyheter. Målet med projektet är att ta fram en nyhetsaggregator som utför sentimentanalys påaktuella nyheter från Aftonbladet, Expressen, DN och SVT där nyheterna kategoriseras i positiva, neutrala och negativa nyheter. Nyheterna samlas in med en egenutvecklad webskrapare som hämtar nyheterna från respektive källa. Sedan laddas nyheterna upp på en databas och bearbetas sedan för maskininlärning. För klassificering av nyhetsartiklar har vi tränat ett neuralt nätverk som utför klassificering av nyheter i det allmänna nyhetsflödet. Vi har även utvecklat en egen lexikonbaserad modell som är unik för varje användare för att kunna predicera användarspecifika sentiment. Resultat är en egendesignad hemsida med ett allmänt nyhetsflöde, samt ett anpassat flöde för registrerade användare, där man med ett reglage kan reglera vilken typ av nyheter och från vilka nyhetssajter som man vill se nyheter. På hemsidan presenteras även statistik över bland annat hur fördelningen av positiva, neutrala och negativa nyheter är på de olika nyhetssajterna
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-477144 |
Date | January 2022 |
Creators | Carlsson, Claude, Germer, Edvin |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | MATVET-F ; 22027, UPTEC F, 1401-5757 ; 22 027 |
Page generated in 0.0024 seconds