Return to search

Geometria Fractal: conjunto de Cantor, dimensão e medida de Hausdorff e aplicações / Fractal Geometry: Cantor set, Hausdorff dimension and masurement and applications

Este trabalho está preocupado com o conceito de medida e dimensão de Hausdorff usando ferramentas matemáticas adequadas. Como, frequentemente, é importante e difícil determinar a dimensão Hausdorff 1 de um conjunto e ainda mais difícil de encontrar ou mesmo estimar a sua medida Hausdorff, por auto proteção é usado o conjunto ternário de Cantor. A construção ternária simplifica certas dificuldades técnicas sobre a teoria da dimensão. O conjunto de Cantor é um exemplo interessante de um conjunto magro, perfeito, compacto e não enumerável, cuja medida e dimensão topológica são nulas. A análise de muitas das suas propriedades e consequências interessantes nos campos da teoria dos conjuntos e da topologia nos oferece uma rota direta que leva à medida Hausdorff do conjunto Cantor e sua dimensão fractal que é igual à sua dimensão Hausdorff. Também é calculada a dimensão Hausdorff para alguns fractais clássicos, como o tapete Sierpinski e a curva de flocos de neve von Koch. / This work is concerned with the concept of Hausdorff measure and dimension using suitable mathematical tools. Since it is often important and dificult to determine the Hausdorff dimension2 of a set and even harder to find or even to estimate its Hausdorff measure, by self-protection choices, it is used the ternary Cantor set. The ternary construction reduces technical difficulties about dimension theory. Cantor set is an interesting example of a meager, perfect, compact, uncountable set whose measure and topologic dimension are zero. Analysis of many of its interesting properties and consequences in the fields of set theory and topology provides a direct route that leads to the Hausdorff measure of the Cantor set and its fractal dimension that is equal to its Hausdorff dimension. It is also computed the Hausdorff dimension for some classical fractals such as the Sierpinski carpet and the von Koch snowflake curve.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-04012019-151235
Date21 September 2018
CreatorsCruz, Rita de Cássia Morasco da
ContributorsSantos, Jair Silverio dos
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0017 seconds