Avec les constantes avancées du séquençage de nouvelle génération (NGS), la quantité de données disponibles devient massive. En parallèle, les méthodes de détection au cancer demeurent très spécifiques et peu efficaces. De plus, le taux de survie des patients est directement relié à la progression tumorale et par conséquent, aux méthodes de détection. Malgré des avancées technologiques très importantes dans les dernières années, le taux de mortalité du cancer ne cesse d’augmenter. L’importance de développer des nouvelles méthodes de détection applicables à tous les types de cancer devient une nécessité. Jusqu’à présent, il n’existe aucun modèle permettant d’utiliser le séquençage de nouvelle génération qui permet la prédiction de caractéristiques cancéreuse (ex : récurrence, résistance, etc.). Les sections suivantes démontrent la création d’un modèle utilisant des mutations somatiques et germinales pour prédire la récurrence et son applicabilité au travers de tous les types de cancers (et même différentes maladies). En utilisant des signatures géniques (combinaisons de gènes) spécifiques à chaque cancer, nous avons été en mesure d’obtenir une précision de 90% (et plus) pour le groupe où le cancer est récurrent. De nos connaissances, ceci est la première tentative de développement de modèle permettant de prédire le pronostic du patient en utilisant le NGS. Ceci amène un nouvel aspect pour la médecine personnalisée et spécialement pour le dépistage du cancer. / With the constant progress in neext generation sequencing, the quantity of data available for investigation becomes massive. In parallel, cancer detection methods and treatments remain very specific and barely accurate. Moreover, the patients survival rate are directly linked with tumoral progression and therefore, to cancer detection methods. Despite continual technological advances in recent years, the global cancer mortality rate keeps rising. The creation of new detection methods accessible to all cancer types becomes a necessity. As of now, there is no model available that using sequencing data to predict cancer traits (ex: recurrence, resistance, etc.). The following sections demonstrate the creation of such model using somatic and germline mutations to predict recurrence and its applicability across all cancer types (and even across different diseases). By using gene signatures specific to each cancer types, we were able to obtain an accuracy of 90% (and more) for the cohort where the cancer was recurrent. To our knowledge, this is the first attempt to develop a model that can predict the patient’s prognosis using genome sequencing data. This will affect future studies and improve personalized medicine as well as cancer detection methods.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/28327 |
Date | 24 April 2018 |
Creators | Milanese, Jean-Sébastien |
Contributors | Droit, Arnaud |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | mémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | 1 ressource en ligne (xii, 72 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0021 seconds