Return to search

[en] VISUAL INTERACTIVE SUPPORT FOR SELECTING SCENARIOS FROM TIME-SERIES ENSEMBLES / [pt] UMA ABORDAGEM VISUAL E INTERATIVA PARA A SELEÇÃO DE CONJUNTOS DE CENÁRIOS TEMPORAIS

[pt] O uso de abordagens de programação estocástica e redução de cenários tem se tornado imprescindível na análise e predição de comportamento de sistemas dinâmicos. Entretanto, tais técnicas não levam em conta o conhecimento prévio sobre domínio que o usuário possui. O presente trabalho tem por objetivo o desenvolvimento de uma abordagem visual e interativa para abordar o problema de redução de cenários com dados temporais. Para tanto, nós propomos a implementação de uma série de visualizações de dados
temporais integradas. Também propomos a adaptação de um algoritmo de projeção multidimensional para lidar com dados temporais. Desta forma, podemos representar graficamente a evolução de um conjunto de cenários ao longo do tempo. Outra visualização proposta no presente trabalho é uma adaptação de Bump chart para lidar com dados temporais acumulados; através dele, um usuário pode comparar a evolução das distâncias entre os diferentes cenários e um cenário de referência. Para validar a nossa proposta, fizemos uma implementação das técnicas propostas e conduzimos um estudo com usuários de diferentes áreas do conhecimento e níveis de experiência. Os resultados obtidos até então indicam que uma abordagem visual
para o problema de redução de cenários é viável, e permite a seleção de um conjunto razoável de cenários. Além disso, constatamos que essa abordagem pode ser útil em um contexto de exploração de dados visando a redução de cenários. O usuário também pode explorar visualmente os resultados de outras
técnicas de redução de cenários usando nossa abordagem. Os usuários entrevistados reportaram facilidade em cumprir as tarefas propostas e comentaram positivamente sobre os mecanismos de interação fornecidos pelo nosso protótipo. Também testamos os cenários escolhidos usando nossa proposta contra outras abordagens encontradas tanto na literatura quanto em uso na indústria. Os resultados obtidos foram bons, indicando que nossa proposta é viável em casos de uso reais. / [en] Stochastic programming and scenario reduction approaches have become invaluable in the analysis and behavior prediction of dynamic systems. However, such techniques often fail to take advantage of the user s own expertise about the problem domain. This work provides visual interactive support to assist users in solving the scenario reduction problem with timeseries data. We employ a series of time-based visualization techniques linked together to perform the task. By adapting a multidimensional projection algorithm to handle temporal data, we can graphically present the evolution of the ensemble. We also propose to use cumulative bump charts to visually compare the ranks of distances between the ensemble time series and a baseline series. To evaluate our approach, we developed a prototype application and conducted observation studies with volunteer users of varying backgrounds and levels of expertise. Our results indicate that a graphical approach to scenario reduction may result in a good subset of scenarios and provides a valuable tool for data exploration in this context. The users liked the interaction mechanisms provided and judged the task to be easy to perform with the tools we have developed. We tested the proposed approach against state-of-the-art techniques proposed in the literature and used in the industry and obtained good results, thus indicating that our approach is viable in a real-world scenario.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:35864
Date14 December 2018
CreatorsGUILHERME GONCALVES SCHARDONG
ContributorsHELIO CORTES VIEIRA LOPES
PublisherMAXWELL
Source SetsPUC Rio
LanguageEnglish
Detected LanguagePortuguese
TypeTEXTO

Page generated in 0.0024 seconds