Spelling suggestions: "subject:"[een] TIME SERIES ENSEMBLES"" "subject:"[enn] TIME SERIES ENSEMBLES""
1 |
[en] VISUAL INTERACTIVE SUPPORT FOR SELECTING SCENARIOS FROM TIME-SERIES ENSEMBLES / [pt] UMA ABORDAGEM VISUAL E INTERATIVA PARA A SELEÇÃO DE CONJUNTOS DE CENÁRIOS TEMPORAISGUILHERME GONCALVES SCHARDONG 14 December 2018 (has links)
[pt] O uso de abordagens de programação estocástica e redução de cenários tem se tornado imprescindível na análise e predição de comportamento de sistemas dinâmicos. Entretanto, tais técnicas não levam em conta o conhecimento prévio sobre domínio que o usuário possui. O presente trabalho tem por objetivo o desenvolvimento de uma abordagem visual e interativa para abordar o problema de redução de cenários com dados temporais. Para tanto, nós propomos a implementação de uma série de visualizações de dados
temporais integradas. Também propomos a adaptação de um algoritmo de projeção multidimensional para lidar com dados temporais. Desta forma, podemos representar graficamente a evolução de um conjunto de cenários ao longo do tempo. Outra visualização proposta no presente trabalho é uma adaptação de Bump chart para lidar com dados temporais acumulados; através dele, um usuário pode comparar a evolução das distâncias entre os diferentes cenários e um cenário de referência. Para validar a nossa proposta, fizemos uma implementação das técnicas propostas e conduzimos um estudo com usuários de diferentes áreas do conhecimento e níveis de experiência. Os resultados obtidos até então indicam que uma abordagem visual
para o problema de redução de cenários é viável, e permite a seleção de um conjunto razoável de cenários. Além disso, constatamos que essa abordagem pode ser útil em um contexto de exploração de dados visando a redução de cenários. O usuário também pode explorar visualmente os resultados de outras
técnicas de redução de cenários usando nossa abordagem. Os usuários entrevistados reportaram facilidade em cumprir as tarefas propostas e comentaram positivamente sobre os mecanismos de interação fornecidos pelo nosso protótipo. Também testamos os cenários escolhidos usando nossa proposta contra outras abordagens encontradas tanto na literatura quanto em uso na indústria. Os resultados obtidos foram bons, indicando que nossa proposta é viável em casos de uso reais. / [en] Stochastic programming and scenario reduction approaches have become invaluable in the analysis and behavior prediction of dynamic systems. However, such techniques often fail to take advantage of the user s own expertise about the problem domain. This work provides visual interactive support to assist users in solving the scenario reduction problem with timeseries data. We employ a series of time-based visualization techniques linked together to perform the task. By adapting a multidimensional projection algorithm to handle temporal data, we can graphically present the evolution of the ensemble. We also propose to use cumulative bump charts to visually compare the ranks of distances between the ensemble time series and a baseline series. To evaluate our approach, we developed a prototype application and conducted observation studies with volunteer users of varying backgrounds and levels of expertise. Our results indicate that a graphical approach to scenario reduction may result in a good subset of scenarios and provides a valuable tool for data exploration in this context. The users liked the interaction mechanisms provided and judged the task to be easy to perform with the tools we have developed. We tested the proposed approach against state-of-the-art techniques proposed in the literature and used in the industry and obtained good results, thus indicating that our approach is viable in a real-world scenario.
|
2 |
Visual analytics for detection and assessment of process-related patterns in geoscientific spatiotemporal dataKöthur, Patrick 04 January 2016 (has links)
Diese Arbeit untersucht, inwiefern Visual Analytics die Analyse von Prozessen in geowissenschaftlichen raum-zeitlichen Daten unterstützen kann. Hierzu wurden drei neuartige Visual Analytics Ansätze entwickelt. Jeder Ansatz addressiert eine wichtige Analyseperspektive. Der erste Ansatz erlaubt es, wichtige räumliche Zustände in den Daten sowie deren auftreten in der Zeit zu untersuchen. Mittels hierarchischem Clustering werden alle in den Daten enthaltenen räumlichen Zustände in einer Clusterhierarchie verortet. Interaktive visuelle Analyse ermöglicht es, verschiedene räumliche Zustände aus den Daten zu extrahieren und die dazugehörigen raum-zeitlichen Muster zu interpretieren und zu bewerten. Der zweite Ansatz unterstützt die systematische Analyse des in den Daten zu beobachtenden zeitlichen Verhaltens sowie dessen Auftreten im geographischen Raum mittels einer Kombination aus Cluster Ensembles und interaktiver visueller Exploration. Der dritte Ansatz gestattet die Detektion und Analyse von zeitlichen Zusammenhängen in den Daten. Hierzu wurde eine etablierte Methode zur Analyse von zeitlichen Zusammenhängen zwischen zwei einzelnen Zeitreihen, gefensterte Kreuzkorrelation, durch Visual Analytics auf den Vergleich von Zeitreihenensembles erweitert. Dadurch ist es nicht nur möglich, Zusammenhänge zwischen Zeitreihen zu untersuchen, sondern auch Unsicherheiten in den Daten zu berücksichtigen. Alle Ansätze wurden anhand einer nutzer- und aufgabenorientierten Methodik entwickelt und erfolgreich in Anwendungsfällen aus der Erdsystem-Modellierung, der Ozeanmodellierung, der Paläoklimatologie und sogar den Kognitionswissenschaften eingesetzt. Diese Dissertation zeigt, dass Visual Analytics einen wertvollen Ansatz zur Analyse von Prozess-bezogenen Mustern in raum-zeitlichen Daten darstellt. Es kann die Grenzen existierender Analysemethoden erweitern und ermöglicht Geowissenschaftlern neue, aufschlussreiche Sichtweisen auf Daten und die darin beschriebenen Prozesse. / This thesis studied how visual analytics can facilitate the analysis of processes in geoscientific spatiotemporal data. Three novel visual analytics solutions were developed, each addressing an important analysis perspective. The first solution addresses the analysis of prominent spatial situations in the data and their occurrence over time. Hierarchical clustering is used to arrange all spatial situations in the data in a hierarchy of clusters. The combination with interactive visual analysis enables geoscientists to explore and alter the resulting hierarchy, to extract different sets of representative spatial situations, and to interpret and assess the corresponding spatiotemporal patterns. The second solution supports geoscientists in the analysis of prominent types of temporal behavior and their location in geographic space. Cluster ensembles are integrated with interactive visual exploration to enable users to systematically detect and interpret various types of temporal behavior in different data sets and to use this information for assessment of simulation model output. The third solution enables geoscientists to detect and analyze interrelations of temporal behavior in the data. Windowed cross-correlation, a technique for comparison of two individual time series, was extended to the comparison of entire ensembles of time series through visual analytics. This not only allows scientists to study interrelations, but also to assess how much these interrelations vary between two ensembles. All visual analytics solutions were developed following a rigorous user- and task-centered methodology and successfully applied to use cases in Earth system modeling, ocean modeling, paleoclimatology, and even cognitive science. The results of this thesis demonstrate that visual analytics successfully addresses important analysis perspectives and that it is a valuable approach to the analysis of process-related patterns in geoscientific spatiotemporal data.
|
Page generated in 0.0431 seconds