Return to search

Optimizing the Effect of Vegetation for Pedestrian Thermal Comfort and Urban Heat Island Mitigation in a Hot Arid Urban Environment

abstract: Rapid urbanization in Phoenix, Arizona has increased the nighttime temperature by 5°C (9 °F), and the average daily temperatures by 3.1°C (5.6 °F) (Baker et al 2002). On the macro scale, the energy balance of urban surface paving materials is the main contributor to the phenomenon of the Urban Heat Island effect (UHI). On the micro scale, it results in a negative effect on the pedestrian thermal comfort environment. In their efforts to revitalize Downtown Phoenix, pedestrian thermal comfort improvements became one of the main aims for City planners. There has been an effort in reformulating City zoning standards and building codes with the goal of developing a pedestrian friendly civic environment. Much of the literature dealing with mitigating UHI effects recommends extensive tree planting as the chief strategy for reducing the UHI and improving outdoor human thermal comfort. On the pedestrian scale, vegetation plays a significant role in modifying the microclimate by providing shade and aiding the human thermal comfort via evapotranspiration. However, while the extensive tree canopy is beneficial in providing daytime shade for pedestrians, it may reduce the pavement surfaces' sky-view factor during the night, thereby reducing the rate of nighttime radiation to the sky and trapping the heat gained within the urban materials. This study strives to extend the understanding, and optimize the recommendations for the use of landscape in the urban context of Phoenix, Arizona for effectiveness in both improving the human thermal comfort and in mitigating the urban heat island effect. / Dissertation/Thesis / Ph.D. Design 2014

Identiferoai:union.ndltd.org:asu.edu/item:25023
Date January 2014
ContributorsRosheidat, Akram (Author), Bryan, Harvey (Advisor), Lee, Taewoo (Committee member), Chalfoun, Nader (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format140 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.0018 seconds