Return to search

Campos hipoelíticos no plano / Hypoelliptic planar vector fields

Seja L um campo vetorial complexo não singular definido em um aberto do plano. Treves provou que se L é localmente resolúvel então L é localmente integrável. Para campos planares hipoelíticos, vale uma propriedade adicional, a saber, toda integral primeira (restrita a um aberto suficientemente pequeno) é uma aplicação injetiva (e aberta); isto, por sua vez, implica que toda solução da equação homogênea Lu = 0 é localmente da forma u = h 0 Z, com h holomorfa, sendo Z uma integral primeira do campo. O problema central de interesse desta dissertação é a questão global correspondente, ou seja, a exisatência de integrais primeiras globais injetoras e a representação dde soluções globais por composições da integral primeira com uma função holomorfa / Let L be a nonsingular complex vector field defined on an open subset of the plane. Treves proved that if L is locally solvable then L is locally integrable. For hypoelliptic planar vector fields an additional property holds, namely, every first integral (restricted to a sufficiently small open set) is an injective (and open) mapping; this, on its turn, implies that each solution of the homogeneous equation Lu = 0 is locally of the form u = h Z, where h is holomorphic and Z is a first integral of the vector eld. The central problem of interest in this work is the corresponding global question, that is, the existence of global, injective first integrals and the representation of global solutions as compositions of the first integral with a holomorphic function

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-19032013-094256
Date21 February 2013
CreatorsCampana, Camilo
ContributorsBergamasco, Adalberto Panobianco
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0023 seconds