Return to search

Mise en place d’un modèle cellulaire permettant l’exploration fonctionnelle du canal ionique NALCN : caractérisation du courant de fuite induit par le canal humain NALCN et de différents mutants rencontrés dans un contexte pathologique / Setting a cellular model to functionnally explore the ion channel NALCN activity : characterization of human NALCN leak current and differents mutants in a pathological context

L'activité électrique des neurones dépend de la l’expression et de l'activité des canaux ioniques, dont le canal de fuite de sodique récemment décrit, appelé NALCN. Dans les neurones, NALCN est un canal activé par un récepteur couplé aux protéines G qui conduit un courant de fuite de sodium résistant à la TTX et résistant à Cs + et contribue à la mise en place du potentiel de la membrane du repos. Chez l'homme, des mutations récessives et dominantes de NALCN ont récemment été décrites dans des troubles neurologiques complexes tels que la Dystrophie Neuroaxonale Infantile (syndrome INAD) et l'Arthrogryposis Distal de Type 2A (syndrome CLIFHADD). Ces troubles partagent des symptômes communs tels que l'ataxie, les crises épileptiques, l'hypotonie, le retard cognitif et le retard de développement. Les conséquences fonctionnelles de ces mutations NALCN ne sont toutefois pas connues principalement en raison de l'absence d'un modèle cellulaire reproductible pour réaliser une analyse électrophysiologique du courant NALCN. Dans la présente étude, nous décrivons les propriétés des canaux NALCN recombinants dans la lignée cellulaire neuronale, NG108-15. Ces cellules, qui expriment les sous-unités auxiliaires UNC79 et UNC80 de NALCN, ont été transfectées avec des constructions encodant NALCN (type sauvage ou mutants) et sa sous-unité NLF-1. Après la transfection du NALCN de type sauvage, les enregistrements par la technique de patch-clamp ont révélé la présence d'un courant de fuite entrant dans des cellules différenciées. A noter que la transfection des mutants CLIFHADD a entraîné l'expression d'un courant de fuite de sodium significativement plus élevé, comparé aux cellules exprimant des canaux NALCN de type sauvage. Au contraire, aucun courant de ce genre n'a été observé dans les cellules exprimant le mutant INAD. Ces résultats confirment fortement l'hypothèse selon laquelle les mutations dominantes CLIFHADD est un gain de fonction, alors que l'INAD est une mutation de perte de fonction. En conclusion, nos données démontrent que la lignée cellulaire NG108-15 est un modèle cellulaire fiable pour étudier l'activité électrophysiologique des canaux NALCN de type sauvage et mutant. / Electrical activity of neurons is critically dependent on the presence and activity of ion channels, including the recently described “sodium-leak channel” named NALCN. In neurons, NALCN is a G protein-coupled receptor-activated channel that conducts a TTX-resistant and Cs+-resistant sodium-leak current and contributes to setting-up the resting’s membrane potential. In humans, both recessive and dominant mutations of NALCN were recently described in complex neurological disorders such as Infantile Neuroaxonal Dystrophy (INAD) and Type 2A Distal Arthrogryposis (CLIFHADD). These disorders share common symptoms such as ataxia, epileptic seizures, hypotonia, cognitive delay and developmental retardation. The functional consequences of these NALCN mutations are however not known mainly because of the lack of a reliable cellular model to achieve electrophysiological analysis of the NALCN current. In the present study, we describe the properties of recombinant NALCN channels in the neuronal cell line, NG108-15. These cells, which express the NALCN’s ancillary subunits Unc79 and Unc80, were transfected with constructs encoding NALCN (wild-type or mutants) and its NLF-1 subunit. Following transfection of the wild-type NALCN, patch-clamp recordings revealed the presence of an inward background current in differentiated cells. Importantly, transfection of the CLIFHADD mutants resulted in the expression of a significantly larger sodium-leak current, compared to cells expressing wild-type NALCN channels. On the contrary, no such current was observed in cells expressing the INAD mutant. These results strongly support the hypothesis that CLIFHADD are gain-of-function, while INAD are loss-of-function mutations. Altogether, our data demonstrate that the NG108-15 cell line is a reliable cellular model to study electrophysiological activity of wild-type and mutant NALCN channels

Identiferoai:union.ndltd.org:theses.fr/2017MONTT026
Date20 September 2017
CreatorsBouasse, Malik
ContributorsMontpellier, Monteil, Arnaud
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds