Return to search

Étude théorique de l'extinction de fluorescence des protéines fluorescentes : champ de forces, mécanisme moléculaire et modèle cinétique

Les protéines fluorescentes, comme la GFP (green fluorescent protein), sont des protéines naturellement fluorescentes qui sont utilisées pour leur rôle de marqueur, permettant de localiser des protéines dans les cellules et d'en suivre les déplacements. De nombreuses études expérimentales et théoriques ont été menées ces dix dernières années sur les protéines fluorescentes. De là, se forge une compréhension essentiellement qualitative du rôle de la protéine vis-à-vis de l'obtention ou non d'une émission radiative : il apparaît que la protéine permet la fluorescence en bloquant les processus qui la désactivent ; ces processus de désactivation sont très rapides et efficaces (à l'échelle de la picoseconde) dans le cas du chromophore seul, et ils sont bien identifiés comme étant des torsions autour des liaisons intercycles (tau et phi). Dans la protéine, la sensibilité des temps de vie de fluorescence à des mutations proches ou non du chromophore, à des modifications de pH ou de température laisse supposer un contrôle de la dynamique du chromophore par différents paramètres, sans qu'ils soient pour autant identifiés et mis en relation.Une étude de la dynamique de la protéine permettrait de faire la lumière sur les mécanismes responsables de ces phénomènes photophysiques pour lesquels une analyse structurale ne suffit pas. Cependant l'étude de la dynamique est limitée par la taille du système (>30 000 atomes), par l'échelle de temps des phénomènes photophysiques considérés (dizaine de nanosecondes) et par le fait que les deux torsions tau et phi sont fortement couplées dans l'état excité du chromophore. Ces trois facteurs excluent les méthodes de dynamique existantes aujourd'hui ; dynamique quantique (AIMD), dynamique mixte classique-quantique (QM/MD) et dynamique moléculaire classique (MD).Nous avons surmonté le problème par la modélisation de la surface d'énergie potentielle de torsion du chromophore à l'état excité basée sur des calculs quantiques de haute précision, par une interpolation des valeurs obtenues par une expression analytique appropriée en fonction des angles de torsion tau et phi et avec une précision suffisante pour reproduire des barrières de l'ordre de la kcal/mol, et enfin, par l'implémentation de cette expression analytique dans le programme parallèle AMBER. Une deuxième difficulté théorique concerne la simulation et l'analyse statistique d'événements peu fréquents à l'échelle de la nanoseconde, et dont on ne connait pas le chemin de réaction, ici les déformations de la protéine et du chromophore conduisant aux géométries favorables à la conversion interne. Grâce à ces développements et aux simulations qu'ils ont permises, nous avons réalisé la première modélisation de la désactivation non-radiative par conversion interne à l'échelle de la nanoseconde dans trois protéines fluorescentes différentes. L'analyse des dynamiques moléculaires classiques nous donne une évaluation quantitative des temps de vie de l'extinction de fluorescence, en accord avec les données expérimentales. Par ailleurs elle nous a permis d'identifier les mouvements moléculaires concertés de la protéine et du chromophore conduisant à cette extinction. De ces résultats, émerge une représentation plus complète du mécanisme qui libère la torsion du chromophore ou qui la déclenche : il peut venir d'un mouvement spécifique de la protéine, qui se produit à l'échelle de la nanoseconde, ou bien de plusieurs mouvements spécifiques, plus fréquents (rupture de liaisons hydrogène, rotation de chaînes latérales, dynamique d'agrégats d'eau), mais qui coïncident seulement à l'échelle de la nanoseconde. Ces mouvements spécifiques n'ont pas un coût énergétique important mais la nécessité de leur coïncidence crée un délai de l'ordre de quelques nanosecondes alors que dans le vide la torsion se produit en quelques picosecondes. Dans le cas des protéines étudiées, on a identifié en grande partie les mécanismes et les acides aminés qui sont impliqués.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00734397
Date18 July 2012
CreatorsJonasson, Gabriella
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0026 seconds