• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • Tagged with
  • 9
  • 9
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of effective interatomic potentials for computer simulation of oxides / Développement de modèle de potentiels effectifs d'interactions interatomiques pour la modélisation d'oxydes

Sukhomlinov, Sergey 18 December 2012 (has links)
Le modèle de potentiels effectifs d'interactions interatomiques (champ de forces) pour la modélisation d'oxydes a été développé avec l'utilisation de calculs ab initio basés sur la théorie de la fonctionnelle de la densité. Le champ de forces décrit l'énergie potentielle totale du système par la somme de l'énergie électrostatique, celle de dispersion, et l'énergie d'interactions à courte portée. L'énergie électrostatique a été décrite par le modèle d'équilibration des tranferts de charge (SQE) basé sur l'approche d'égalisation du potentiel chimique (CPE). Le calcul de coefficients de dispersion, qui déterminent les interactions de dispersion, a été réalisé avec l'utilisation de fonctions Wannier maximalement localisées (MLWF). Dans les oxydes la position des centres des MLWF près d'atomes permet de calculer les coefficients de dispersion pour chaque atome. Les calculs de ces coefficients ont montré que leur valeur dépend du nombre d'atomes et du rayon de la première sphère de coordination. Le développement de potentiels d'interactions à courte portée a été réalisé avec l'utilisation de la méthode "force-matching", ce qui a permis de choisir la forme analytique des potentiels. Les paramètres des composants du champ de force ont été obtenus sur la base de calculs de chimie quantique de systèmes isolés et périodiques de structures de silicates. Les paramètres du modèle SQE on été calibrés en utilisant le potentiel électrostatique comme la grandeur de référence. Le champ de forces complet a été testé par simulation de polymorphes cristallins de la silice par la méthode de la dynamique moléculaire. Les résultats des calculs ont permis de choisir le meilleur modèle. Le champ de forces sélectionné reproduit bien les caractéristiques structurelles de α-quartz et α-cristobalite. Le calcul de spectres vibrationnels des systèmes montre que le champ de forces sous-estime les constantes de forces Si-O, ce qui conduit à un déplacement de spectres vibrationnels vers les basses fréquences par rapport aux spectres expérimentaux. Des voies visant l'amélioration de la performance du champ de forces sont proposées. / The effective interatomic potential model (force field) for the atomistic modeling of oxide materials was developed with the extensive use of ab initio density functional calculations. The force field represents the total potential energy of system as a sum of the long-range electrostatic, dispersion, and short-range energy contributions. The long-range energy electrostatic energy was described with the use of split-charge equilibration (SQE) model based on the chemical potential equalization (CPE) approach. The electrostatic potential was used as the reference quantity for the calibration of parameters of the SQE model. The computation of dispersion coefficients, which determine the magnitude of the dispersion interactions, was carried out with the use of maximally localized Wannier functions (MLWF). The position of MLWF centers close to the nuclei in oxides permits the computation of the dispersion coefficients in an atom-wise manner. The values of the dispersion coefficients were found to be affected by the coordination number and the radius of the first coordination sphere of atom. The short-range (SR) interaction potentials were designed with the use of force-matching method, which has allowed a judicious choice of the functional form of the SR potentials. The parametrization of the force field components was performed on the basis of extensive quantum-chemical calculations of isolated and periodic silicate systems. The complete force field was tested in the molecular dynamics simulations of crystalline silica polymorphs. Results of the calculations allowed to choose the best model. The selected force field well reproduces structural characteristics of the α-quartz and α-cristobalite polymorphs. The calculation of the vibrational spectra of the systems has shown that the model underestimates the Si-O force constants that leads to a downward shift of the vibrational spectra in comparison with the experimental data. A number of ways aimed at improving the force field's performance are suggested.
2

Études théoriques de l'effet de couplage électron-phonon sur les propriétés de transport dans les nanofils de silicium / Theoretical studies of electron-phonon coupling effect in transport properties of silicon nanowires

Zhang, Wenxing 15 May 2009 (has links)
La structure électronique, le spectre de phonons et les effets du couplage électron-phonon (e-p) sur les propriétés de transport de nanofils de Si (SiNW) ont été étudiés systématiquement sur la base de calculs en liaisons fortes et en champ de forces de valence. La structure électronique des nanofils dépend de leur orientation et de leur diamètre, changeant d’une bande interdite directe à indirecte. La largeur de bande interdite décroît et tend vers celle du Si massif quand le diamètre croît. Les spectres de phonons dépendent également de l’orientation et du diamètre. Ils présentent quatre modes acoustiques ce qui est typique des systèmes unidimensionnels. La mobilité et le temps de vie des électrons dans des nanofils orientés [110] ont été calculés. Les calculs confirment qu’à température ambiante les propriétés de transport dans les SiNWs dépendent fortement de la diffusion par les phonons, impliquant à la fois des modes acoustiques et optiques tous dérivant des modes acoustiques du Si massif. La mobilité augmente et tend vers celle du massif quand le diamètre augmente, et elle décroît quand la température passe de 77K à 300K. La relation entre la mobilité et la densité de porteurs est plus complexe. Pour des densités inférieures à 10 19 cm-3, la mobilité est pratiquement constante car elle ne dépend pas de la position du niveau de Fermi. Pour des densités supérieures, la mobilité dépend très fortement de la densité de porteurs car le niveau de Fermi est suffisamment haut pour croiser le minimum de bande de conduction et le transport multi-bandes devient important. Un autre travail entrepris dans la thèse a concerné la modélisation en liaisons fortes et en fonctions de Green hors équilibre du transport balistique dans des hétérojonctions de nanotubes de carbone (n1,m1)/(n2,m2)/(n1,m1). La conductance des jonctions semiconductrices décroît exponentiellement quand la longueur du nanotube (n2,m2) augmente. Cependant la conductance de (12,0)/(9,0)/(12,0) augmente avec la longueur du nanotube (9,0). Cet accroissement anormal de la conductance est expliqué par l’évolution du potentiel. De plus, la relation entre la conductance et la symétrie de rotation dans les jonctions métalliques est étudiée. Un comportement universel de conductance est démontré et est interprété par la différence de phase des électrons qui traversent deux interfaces de la jonction. Finalement, la conductance balistique de multi-jonctions est étudiée et la possibilité de réaliser des composants basés uniquement sur des nanotubes de carbone est proposée. / In this thesis, the electronic structure, the phonon spectrum, and the electron-phonon (e-p) coupling effect in transport properties of Silicon Nanowires (SiNW) have been studied systematically based on Tight-Binding (TB) model and Valence-Force-Field (VFF) model. The electronic structure of SiNW is strongly dependent on the orientation and the diameter, even changing from direct gap to indirect gap, and the gap of SiNWs decreases and tends to the bulk value as the diameter increases. The phonon spectra are also dependent on the orientation and the diameter. It’s a character of nanowires that there are four acoustic phonon modes. Based on the calculation of both low field mobility and lifetime of electrons in SiNWs along [110], it’s confirmed that at room temperature the transport of carriers in SiNWs strongly depends on the phonon scattering, involving both optical phonons and acoustic phonons. The mobility increases and tends to the bulk value when the diameter increases. The mobility decreases in power law when the temperature increases from 77K to 300K. The relationship between the mobility and the density of carrier is more complicated. For low density of carrier (<10 19/cm3), the mobility is almost constant because it is approximately independent on the Fermi level at low concentration. For higher concentration, the mobility is strongly dependent on the density of carrier because the Fermi level is high enough to cross the conduction band edge (CBE) and multi-band transport becomes important. In a second study undertaken in this thesis, TB model and Nonequilibrium Green's Function (NEGF) are used to calculate the ballistic transport properties of carbon nanotube (CNT) heterojunctions (n1,m1)/(n2,m2)/(n1,m1). The conductance of semiconducting junctions decreases exponentially when the length of the middle CNT (n2,m2) increases. However, the conductance of (12,0)/(9,0)/(12,0) increases when the length of the CNT (9,0) increases. This anomalous increase of conductance is explained and reproduced very well by an exponentially dropped potential. Furthermore, the relationship between the conductance and the rotation symmetry in metallic jonctions is studied. The conductance spectra change periodically, and there are three different spectra at most for a special type of jonction. This universal behavior of conductance can be well understood by the phase difference of electrons, which travel through two interfaces of a junction. Finally, the ballistic conductance of multi-Iead junctions is studied and the possibility of making pure CNT electronic device is revealed.
3

Simulation atomistique de cristaux liquides

Wespiser, Clément January 2017 (has links)
Les cristaux liquides constituent un état de la matière intermédiaire entre les solides et les liquides. De ce fait, ils allient à la fois la fluidité des liquides et les propriétés anisotropes des solides. Ce qui les rend à la fois excitants et compliqués à étudier est leur grande diversité. En effet, il existe plus d'une dizaine de phases différentes, chacune caractérisée par une structure et des propriétés particulières. De plus, de petits changements dans la structure des molécules peuvent mener à un polymorphisme liquide cristallin modifié ou des intervalles de stabilité thermique bien différents. Au sein du laboratoire, pour essayer d'y voir plus clair et de comprendre quels sont les facteurs microscopiques qui influencent le polymorphisme liquide cristallin, une technique relativement récente a été utilisée. Il s'agit de la dynamique moléculaire au niveau atomistique. Cet outil permet d'étudier des molécules dans des conditions qui tendent à représenter au mieux des conditions expérimentales, avec une température, une pression, une densité, etc. En simulant des systèmes qui ont été caractérisés expérimentalement, des corrélations entre le comportement expérimental et simulé peuvent être extraites. L'hypothèse que nous souhaitons vérifier dans ces travaux est la suivante: les variations de l'énergie non liante de Coulomb, un terme énergétique qui peut être extrait des simulations, peuvent être corréler à des observations expérimentales. Cette hypothèse se base sur les travaux précédents effectués au sein du laboratoire sur la phase smectique C (SmC). Dans ces travaux, la plage de stabilité thermique de la phase SmC a été corrélée aux valeurs des énergies non liantes de Coulomb. Dans le cadre de cette étude, le même protocole de simulation est utilisé pour étudier la phase smectique A (SmA), dans le but de confirmer les observations faites sur la phase SmC. Pour ce faire, deux familles de mésogènes (molécules possédant une ou plusieurs phases liquides cristallines dans leurs polymorphisme) sont étudiées. Ces deux familles diffèrent par de petits détails structuraux qui ont pourtant une grande influence sur le polymorphisme expérimental. Il s'agit, dans le cas de ces deux familles, de la longueur d'une chaîne alkyle ou alkoxy sur le mésogène. Pour la première famille de mésogènes, le type de phase SmA observé est différent selon la longueur de la chaîne. Pour la deuxième famille, des mésogènes formés par liaison halogène, il a été observé expérimentalement que la longueur de la chaîne a un impact sur la plage de stabilité thermique de la phase SmA. Ces deux familles sont donc tout à fait appropriées pour une étude par simulation au niveau atomistique. En ce qui concerne les résultats de la première famille, le mésogène présentant une phase SmA différente des autres mésogènes est associé à une énergie de Coulomb également différente. Pour relier ces énergies à l'organisation des molécules au sein des phases, un raisonnement basé sur la dépendance en distance de cette interaction est utilisé. Si une attraction existe entre les mésogènes, une énergie relativement plus basse correspond à des mésogènes plus proches les uns des autres. Au contraire, si les molécules ont tendance à s'éloigner les unes des autres, une énergie relativement plus élevée correspond à une distance intermoléculaire plus faible. Nous avons pu tirer des conclusions quant aux positions relatives des mésogènes et montrer qu'elles pouvaient être reliées à la phase observée expérimentalement. Pour la deuxième famille, nous observons que le mésogène avec la plage de stabilité thermique la plus grande est celui pour lequel les énergies de Coulomb sont les plus faibles, donc celui pour lequel l'arrangement initial imposé (arrangement SmA) est le plus stable énergétiquement. Ces deux projets d'étude de la phase SmA montrent que l'hypothèse mise de l'avant dans les travaux précédents portant sur la phase SmC est vérifiée. La combinaison simulation/expérience fournit des données sur les deux échelles nécessaires, à savoir la molécule et la phase macroscopique, pour essayer d'identifier les liens existants entre ces deux mondes.
4

Interprétation microscopique de l'émergence des verres moléculaires : un pont entre l'expérience et la simulation

St-Onge, Vincent January 2017 (has links)
Les verres moléculaires sont passionnants puisqu'ils soulèvent plusieurs interrogations quant à la nature même de leur existence. Comment expliquer l'émergence de la phase vitreuse au sein de petites molécules organiques d'une cinquantaine d'atomes? Existe-t-il une explication moléculaire permettant de comprendre ce phénomène ou s'agit-il d'une propriété d'ordre supérieur régie par ses propres lois où une interprétation au niveau moléculaire ne suffit pas à expliquer la formation d'un matériau vitreux? Est-il possible d'obtenir un modèle permettant de bien représenter la phase solide amorphe des verres moléculaires et prédire ses différentes propriétés physico-chimiques et mécaniques? C'est ce que la recherche présentée dans ce mémoire tente de résoudre en apportant quelques éclaircissements. Dans un premier temps, le lecteur sera plongé dans l'importance du projet avec un contexte littéraire actuel, un bref état de l'art de la recherche sur les verres moléculaires, ainsi qu'une brève présentation du chemin de pensée qui a mené à la création de ce projet de recherche sur les verres moléculaires. Dans un deuxième temps, il se verra montrer les différents concepts théoriques des techniques utilisées, que sont la spectroscopie par résonance magnétique nucléaire dynamique et l'analyse de ses bandes, ainsi que la simulation par calculs quantiques et par dynamique moléculaire, pour répondre aux questions précédentes. Dans un troisième et dernier temps, le lecteur se verra expliquer les différents résultats et leurs conséquences quant à la résolution du mystère des verres moléculaires, ainsi que les travaux qui demeurent à effectuer sur le projet pour parvenir à obtenir un bon modèle de prédiction pour les propriétés désirées. Les résultats obtenus au fil des travaux de recherche effectués et présentés en détail dans ce mémoire sont d'une grande importance pour la compréhension du phénomène de la phase vitreuse qui existe au sein des verres moléculaires. Entre autres, la quantification des énergies d'activation a permis de comprendre qu'en milieu solvaté, il faut avoir une énergie d'activation minimale d'environ 20kJ/mol pour une rotation d'angle dièdre pour qu'une phase vitreuse soit observée dans le matériau. De plus, les mesures ont montré que le modèle de simulation qui était utilisé avant le début de ces travaux de recherche n'était pas idéal pour bien représenter les mouvements au sein des verres moléculaires. Les mouvements en question incluent les oscillations des longueurs de liaisons, les oscillations des angles de valence et les rotations d'un angle dièdre autour d'une liaison. De nouveaux paramètres ont été obtenus par calculs quantiques et ils ont confirmé que les paramètres du champ de forces qui était utilisé n'étaient pas bons pour la simulation de verres moléculaires. Entre autres, les valeurs d'équilibre d'oscillations des longueurs de liaisons et des angles de valence n'étaient pas du tout les mêmes que celles définies dans le champ de forces utilisé. Les concepts associés aux travaux réalisés ainsi que les résultats obtenus ont été présentés dans plusieurs congrès, entre autres, au « Canadian Society for Chemistry » en 2015 et en 2016, respectivement à Ottawa (ON, Canada) et à Halifax (NS, Canada), sous forme d'affiches. Ils ont aussi été présentés aux congrès du centre québécois sur les matériaux fonctionnels en 2015, sous forme d'affiche, et en 2016, en présentation à l'oral.
5

Lattice model for amyloid peptides : OPEP force field parametrization and applications to the nucleus size of Alzheimer's peptides / Modèle réseau de peptides amyloïdes : paramétrisation du champ de forces OPEP et application aux noyaux de nucléation de peptides d'Alzheimer

Tran, Thanh Thuy 20 September 2016 (has links)
La maladie d’Alzheimer touche plus de 40 millions de personnes dans le monde et résulte de l’agrégation du peptide beta-amyloïde de 40/42 résidus. En dépit de nombreuses études expérimentales et théoriques, le mécanisme de formation des fibres et des plaques n’est pas élucidé, et les structures des espèces les plus toxiques restent à déterminer. Dans cette thèse, je me suis intéressée à deux aspects. (1) La détermination du noyau de nucléation (N*) de deux fragments (Aβ)16-22 et (Aβ)37-42. Mon approche consiste à déterminer les paramètres OPEP du dimère (Aβ)16-22 en comparant des simulations Monte Carlo sur réseau et des dynamiques moléculaires atomiques par échange de répliques. Les paramètres fonctionnant aussi sur le trimère (Aβ)16-22 et les dimères et trimères (Aβ)37-42, j’ai étudié la surface d’énergie libre des décamères et mes simulations montrent que N* est de 10 chaines pour (Aβ)16-22 et est supérieure à 20 chaines pour (Aβ)37-42. (2) J’ai ensuite étudié les structures du dimère (Aβ)1-40 par simulations de dynamique moléculaire atomistique par échanges de répliques. Cette étude, qui fournit les conformations d’équilibre du dimère Aβ1-40 en solution aqueuse, ouvre des perspectives pour une compréhension de l’impact des mutations pathogènes et protectrices au niveau moléculaire. / The neurodegenerative Alzheimer's disease (AD) is affecting more than 40 million people worldwide and is linked to the aggregation of the amyloid-β proteins of 40/42 amino acids. Despite many experimental and theoretical studies, the mechanism by which amyloid fibrils form and the 3D structures of the early toxic species in aqueous solution remain to be determined. In this thesis, I studied the structures of the eraly formed oligomers of the amyloid-β peptide and the critical nucleus size of two amyloid-β peptide fragments using either coarse-grained or all-atom simulations. First, at the coarse-grained level, I developed a lattice model for amyloid protein, which allows us to study the nucleus sizes of two experimentally well-characterized peptide fragments (Aβ)16-22 and (Aβ)37-42 of the Alzheimer's peptide (Aβ)1-42. After presenting a comprehensive OPEP force-field parameterization using an on-lattice protein model with Monte Carlo simulations and atomistic simulations, I determined the nucleus sizes of the two fragments. My results show that the nucleation number is 10 chains for (Aβ)16-22 and larger than 20 chains for (Aβ)37-42. This knowledge is important to help design more effective drugs against AD. Second, I investigated the structures of the dimer (Aβ)1-40 using extensive atomistic REMD simulations. This study provides insights into the equilibrium structure of the (Aβ)1-40 dimer in aqueous solution, opening a new avenue for a comprehensive understanding of the impact of pathogenic and protective mutations in early-stage Alzheimer’s disease on a molecular level.
6

Étude théorique de l'extinction de fluorescence des protéines fluorescentes : champ de forces, mécanisme moléculaire et modèle cinétique

Jonasson, Gabriella 18 July 2012 (has links) (PDF)
Les protéines fluorescentes, comme la GFP (green fluorescent protein), sont des protéines naturellement fluorescentes qui sont utilisées pour leur rôle de marqueur, permettant de localiser des protéines dans les cellules et d'en suivre les déplacements. De nombreuses études expérimentales et théoriques ont été menées ces dix dernières années sur les protéines fluorescentes. De là, se forge une compréhension essentiellement qualitative du rôle de la protéine vis-à-vis de l'obtention ou non d'une émission radiative : il apparaît que la protéine permet la fluorescence en bloquant les processus qui la désactivent ; ces processus de désactivation sont très rapides et efficaces (à l'échelle de la picoseconde) dans le cas du chromophore seul, et ils sont bien identifiés comme étant des torsions autour des liaisons intercycles (tau et phi). Dans la protéine, la sensibilité des temps de vie de fluorescence à des mutations proches ou non du chromophore, à des modifications de pH ou de température laisse supposer un contrôle de la dynamique du chromophore par différents paramètres, sans qu'ils soient pour autant identifiés et mis en relation.Une étude de la dynamique de la protéine permettrait de faire la lumière sur les mécanismes responsables de ces phénomènes photophysiques pour lesquels une analyse structurale ne suffit pas. Cependant l'étude de la dynamique est limitée par la taille du système (>30 000 atomes), par l'échelle de temps des phénomènes photophysiques considérés (dizaine de nanosecondes) et par le fait que les deux torsions tau et phi sont fortement couplées dans l'état excité du chromophore. Ces trois facteurs excluent les méthodes de dynamique existantes aujourd'hui ; dynamique quantique (AIMD), dynamique mixte classique-quantique (QM/MD) et dynamique moléculaire classique (MD).Nous avons surmonté le problème par la modélisation de la surface d'énergie potentielle de torsion du chromophore à l'état excité basée sur des calculs quantiques de haute précision, par une interpolation des valeurs obtenues par une expression analytique appropriée en fonction des angles de torsion tau et phi et avec une précision suffisante pour reproduire des barrières de l'ordre de la kcal/mol, et enfin, par l'implémentation de cette expression analytique dans le programme parallèle AMBER. Une deuxième difficulté théorique concerne la simulation et l'analyse statistique d'événements peu fréquents à l'échelle de la nanoseconde, et dont on ne connait pas le chemin de réaction, ici les déformations de la protéine et du chromophore conduisant aux géométries favorables à la conversion interne. Grâce à ces développements et aux simulations qu'ils ont permises, nous avons réalisé la première modélisation de la désactivation non-radiative par conversion interne à l'échelle de la nanoseconde dans trois protéines fluorescentes différentes. L'analyse des dynamiques moléculaires classiques nous donne une évaluation quantitative des temps de vie de l'extinction de fluorescence, en accord avec les données expérimentales. Par ailleurs elle nous a permis d'identifier les mouvements moléculaires concertés de la protéine et du chromophore conduisant à cette extinction. De ces résultats, émerge une représentation plus complète du mécanisme qui libère la torsion du chromophore ou qui la déclenche : il peut venir d'un mouvement spécifique de la protéine, qui se produit à l'échelle de la nanoseconde, ou bien de plusieurs mouvements spécifiques, plus fréquents (rupture de liaisons hydrogène, rotation de chaînes latérales, dynamique d'agrégats d'eau), mais qui coïncident seulement à l'échelle de la nanoseconde. Ces mouvements spécifiques n'ont pas un coût énergétique important mais la nécessité de leur coïncidence crée un délai de l'ordre de quelques nanosecondes alors que dans le vide la torsion se produit en quelques picosecondes. Dans le cas des protéines étudiées, on a identifié en grande partie les mécanismes et les acides aminés qui sont impliqués.
7

Modélisation de complexes et agrégats moléculaires en matrice cryogénique / Modeling of complexes and molecular clusters in cryogenic matrices

Iftner, Christophe 20 October 2015 (has links)
Cette thèse présente le développement et les applications d'un formalisme hybride quantique-classique pour décrire la structure électronique d'un système actif avec un environnement cryogénique (agrégat ou matrice d'atomes de gaz rare). La description quantique de la structure électronique du système actif est faite dans le cadre d'une approximation de type Liaisons Fortes de la Théorie de la Fonctionnelle de la Densité, avec charges atomiques autocohérentes (SCC-DFTB). L'environnement de gaz rare est décrit par des potentiels classiques atome-atome (FF). L'interaction entre le sytème actif et les atomes de l'environnement cryogénique est représentée par des opérateurs matriciels locaux anisotropes électron-atome, ainsi que par des contributions de polarisation et de dispersion. La détermination des opérateurs et des paramètres d'interaction est extraite de calculs ab initio post Hartree-Fock (CCSD-T) sur les paires atome actif/atome d'argon. Les applications concernent les interactions entre hydrocarbures, agrégats d'eau isolés ou complexes hydrocarbures/eau avec des agrégats et ou des matrices d'argon. Le modèle est validé sur de petits systèmes (molécule C6H6 , molécule H2O) en interaction avec des atomes et agrégats d'argon. Nous avons ainsi déterminé les données structurales et énergétiques pour les agrégats (C6H6)Arn (n < 55) qui ont été comparées à des données ab initio (DFT, CCSD-T) pour les plus petits agrégats, ou à des calculs de champ de force publiés dans la littérature pour les agrégats de plus grande taille. Le modèle permet également un traitement unifié de différentes situations électroniques permettant ainsi la détermination de l'évolution des potentiels d'ionisation du système actif en fonction de la taille n de l'agrégat solvatant. Le modèle DFTB/FF a ensuite été appliqué à des molécules et nano-agrégats d'eau (H2O)n (n=2-6) insérés dans des matrices d'argon, représentées par des sous-ensembles finis du réseau cristallin cubique faces centrées. Des données structurales et énergétiques ont été obtenues. Des études de dynamique moléculaire ont permis la détermination de spectres infrarouges (IR) à température finie. La comparaison des spectres IR théoriques caractérisant une molécule d'eau en matrice avec les données expérimentales nous a permis de valider l'approche DFTB/FF. Le cas de l'hexamère (H2O)6, plus petit agrégat présentant une structure tri-dimensionnelle et caractérisé par plusieurs isomères stables, a été étudié de façon exhaustive : l'effet de la matrice sur les structures de certains de ces isomères a été mis en évidence, ainsi que des effets différentiels sur leur stabilités respectives. Une influence sur les positions des bandes IR des agrégats a également été montrée. Les résultats obtenus permettent une interprétation satisfaisante des données expérimentales existantes pour les plus petits agrégats. L'assignation des spectres expérimentaux de l'hexamère demeure incertaine. Enfin, des résultats préliminaires sur les structures, l'énergétique et les spectres IR à température finie ont été obtenus pour des complexes d'Hydrocarbures Aromatiques Polycycliques avec l'eau (HAP-H2O) en matrices d'argon. L'ensemble des données obtenues pour ces complexes est discuté en relation avec les résultats expérimentaux en environnement cryogénique obtenus dans l'équipe de Joëlle Mascetti de l'Institut des Sciences Moléculaires de l'Université Bordeaux I, dans le cadre d'une collaboration ANR (ANR PARCS no 13-BS08-0005). Ce travail a bénéficié d'une allocation de thèse co-financée par l'Institut de Physique du CNRS et le Conseil Régional de la région Midi-Pyrénées. / This thesis presents the development and applications of an hybrid quantum-classical formalism in order to describe the electronic structure of an active system in a cryogenic environment (cluster or rare gas matrix). The quantum description of the electronical structure of the active system is based on a a tight-binding approximation of the density functional theory, with self-consistency regarding the charges (SCC-DFTB). The rare gaz environment is described via classical atom-atom potential (FF). The interaction between the active system and the atoms of the cryogenic environment is represented by local anisotropic matricial electron-atom operators, as well as by polarisation and dispersion contributions. Operators and interaction parameters are extracted from post Hartree-Fock \textit{ab initio} calculations (CCSD-T) of active atom/argon atom pairs. The applications involve hydrocarbons, isolated water clusters or hydrocarbon/water complexes in interaction with argon clusters or matrices. The model has been validated on small systems (C6H6 molecule, H2O molecule) in interaction with argon atoms and clusters. We have been able to determine structural and energetic data for (C6H6)Arn (n < 55) clusters which are benchmarked against ab initio results (DFT,CCSD-T) for the smaller sizes, or with respect to FF calculations, available in the literature, for larger sized clusters. The model enables to treat various electronic situations, allows in particular to determine the evolution of the ionization potentials of the active system as a function of the inert cluster size. The SCC-DFTB/FF model has then been applied to water molecules and water nano-clusters (H2O)n (n=2-6) embedded in argon matrices, represented by finite size cristal pieces of the face centered cubic lattice. Structural and energetical data have been obtained. Molecular dynamics studies have enabled the determination of finite temperature infrared (IR) spectra. Comparison between the theoretical and experimental spectra of the water monomer embedded in the matrix validates the SCC-DFTB/FF approach. The case of the water hexamer (H2O)6, the smallest cluster presenting a three-dimensional structure and caracterized by several low-energy isomers, has been investigated exhaustively : the effect of the matrix on the structures of some isomers has been shown as well as differential effects on their respective stabilities. An influence on IR lines positions has also been highlighted. Our theoretical study allows for a satisfactory interpretation of the experimental data for the smallest clusters (n<4). The assignment of the experimental spectra of the hexamer remains in discussion. Finally, preliminary results on structures, energetics and finite temperature IR spectra have been obtained for Polycyclic Aromatic Hydrocarbons (PAH) /water complexes. The results for the complexes are discussed in relation with experimental data obtained in the team of Joëlle Mascetti at the Institute of Molecular Sciences (University of Bordeaux I), in the context of an ANR collaborative project (ANR PARCS no 13-BS08-0005). The thesis has been co-financed by the CNRS Institute of Physics and Conseil Regional of Region Midi-Pyrénées.
8

Étude théorique de l’extinction de fluorescence des protéines fluorescentes : champ de forces, mécanisme moléculaire et modèle cinétique / A theoretical study of the fluorescence quenching in fluorescent proteins : force field, molecular mechanism and kinetic model

Jonasson, Gabriella 18 July 2012 (has links)
Les protéines fluorescentes, comme la GFP (green fluorescent protein), sont des protéines naturellement fluorescentes qui sont utilisées pour leur rôle de marqueur, permettant de localiser des protéines dans les cellules et d'en suivre les déplacements. De nombreuses études expérimentales et théoriques ont été menées ces dix dernières années sur les protéines fluorescentes. De là, se forge une compréhension essentiellement qualitative du rôle de la protéine vis-à-vis de l’obtention ou non d’une émission radiative : il apparaît que la protéine permet la fluorescence en bloquant les processus qui la désactivent ; ces processus de désactivation sont très rapides et efficaces (à l'échelle de la picoseconde) dans le cas du chromophore seul, et ils sont bien identifiés comme étant des torsions autour des liaisons intercycles (tau et phi). Dans la protéine, la sensibilité des temps de vie de fluorescence à des mutations proches ou non du chromophore, à des modifications de pH ou de température laisse supposer un contrôle de la dynamique du chromophore par différents paramètres, sans qu’ils soient pour autant identifiés et mis en relation.Une étude de la dynamique de la protéine permettrait de faire la lumière sur les mécanismes responsables de ces phénomènes photophysiques pour lesquels une analyse structurale ne suffit pas. Cependant l'étude de la dynamique est limitée par la taille du système (>30 000 atomes), par l'échelle de temps des phénomènes photophysiques considérés (dizaine de nanosecondes) et par le fait que les deux torsions tau et phi sont fortement couplées dans l'état excité du chromophore. Ces trois facteurs excluent les méthodes de dynamique existantes aujourd'hui ; dynamique quantique (AIMD), dynamique mixte classique-quantique (QM/MD) et dynamique moléculaire classique (MD).Nous avons surmonté le problème par la modélisation de la surface d’énergie potentielle de torsion du chromophore à l’état excité basée sur des calculs quantiques de haute précision, par une interpolation des valeurs obtenues par une expression analytique appropriée en fonction des angles de torsion tau et phi et avec une précision suffisante pour reproduire des barrières de l’ordre de la kcal/mol, et enfin, par l’implémentation de cette expression analytique dans le programme parallèle AMBER. Une deuxième difficulté théorique concerne la simulation et l’analyse statistique d’événements peu fréquents à l’échelle de la nanoseconde, et dont on ne connait pas le chemin de réaction, ici les déformations de la protéine et du chromophore conduisant aux géométries favorables à la conversion interne. Grâce à ces développements et aux simulations qu'ils ont permises, nous avons réalisé la première modélisation de la désactivation non-radiative par conversion interne à l’échelle de la nanoseconde dans trois protéines fluorescentes différentes. L’analyse des dynamiques moléculaires classiques nous donne une évaluation quantitative des temps de vie de l’extinction de fluorescence, en accord avec les données expérimentales. Par ailleurs elle nous a permis d'identifier les mouvements moléculaires concertés de la protéine et du chromophore conduisant à cette extinction. De ces résultats, émerge une représentation plus complète du mécanisme qui libère la torsion du chromophore ou qui la déclenche : il peut venir d’un mouvement spécifique de la protéine, qui se produit à l’échelle de la nanoseconde, ou bien de plusieurs mouvements spécifiques, plus fréquents (rupture de liaisons hydrogène, rotation de chaînes latérales, dynamique d'agrégats d’eau), mais qui coïncident seulement à l’échelle de la nanoseconde. Ces mouvements spécifiques n’ont pas un coût énergétique important mais la nécessité de leur coïncidence crée un délai de l’ordre de quelques nanosecondes alors que dans le vide la torsion se produit en quelques picosecondes. Dans le cas des protéines étudiées, on a identifié en grande partie les mécanismes et les acides aminés qui sont impliqués. / Fluorescent proteins, like GFP (green fluorescent protein), are efficient sensors for a variety of physical-chemical properties and they are extensively used as markers in living cells imaging. These proteins have been widely studied both experimentally and theoretically the last decade. The comprehension of the protein's role in the regulation of the radiative emission is today essentially qualitative: it appears that the protein enables the fluorescence by blocking the processes that deactivates it; the deactivating processes are very quick and efficient (on the picosecond time scale) when the chromophore is isolated, and they are identified as being the torsions around the central bonds of the chromophore (tau and phi). The fluorescence lifetimes of a protein is very sensitive to mutations in the vicinity of the chromophore, to modifications in pH or in temperature. This seems to indicate a control of the dynamics of the chromophore by different parameters, that are not necessarily identified.A study of the dynamics of the protein would allow a deeper understanding of the mechanisms that are responsible for the fluorescence quenching. From a theoretical point of view, one is faced with three difficulties in this type of study: the size of the system (>30 000 atoms including a water box), the required time scale (tens of nanoseconds) and the fact that the torsions tau and phi are strongly coupled in the excited state of the chromophore. We must thus rule out the already existing dynamics methods: quantum dynamics (AIMD), mixed classical-quantum dynamics (QM/MD) and classical molecular dynamics (MD).We have overcome this problem by modeling the torsional potential energy surface of the chromophore in the first excited state trough high precision quantum calculations, by interpolating the energy values with an analytical fitting expression depending on the torsions tau and phi and with a precision high enough to reproduce barriers of the order of 1 kcal/mol, and lastly, by implementing this fitting expression in a parallelized version of the MD program AMBER. Another theoretical difficulty concerns the simulation and the statistical analysis of rare events on the nanosecond time scale without knowing the reaction path in advance, i.e. the deformations of the protein and of the chromophore leading to geometries where the internal conversion is favored. As a result of these developments and of the simulations they have enabled, we have been able to model, for the first time, the non-radiative deactivation by internal conversion at the nanosecond time scale in three different fluorescent proteins. The analysis of the classical molecular dynamics gives us a quantitative evaluation of the lifetime of the fluorescence extinction, in agreement with experimental results. In addition, it has allowed us to identify the concerted molecular movements between the protein and the chromophore leading to this extinction. A more complete representation of the mechanism that liberates or provokes the chromophore torsion emerges from these results: it could be a specific movement of the protein, that occurs on the nanosecond timescale, or several specific movements that occur more frequently (breakage of a hydrogen bond, rotation of side chains, dynamics of a water cluster), but that coincide only on the nanosecond time scale. These specific movements do not have a high energy cost but the need for them to coincide creates a delay of several nanoseconds compared to the chromophore torsion in vacuo which occurs after a few picoseconds. In the proteins we have studied (GFP, YFP and Padron), we have identified the principle components of the mechanisms and the amino acids that are implicated in this chromophore-protein interplay.
9

Études par dynamique moléculaire de l’interaction de Récepteurs Couplés aux Protéines-G avec leurs partenaires extra et intra-cellulaires / Molecular dynamics studies of the interaction between G-Protein-Coupled Receptors and their extra and intra-cellular partners

Delort, Bartholomé 19 November 2018 (has links)
Les Récepteurs Couplés aux Protéines-G forment la plus importante famille de protéines membranaires chez l’homme et sont impliqués dans de nombreux processus de signalisation cellulaire. Aussi, ils forment un vivier très important de cibles thérapeutiques, déjà identifiées ou potentielles. L’activation d’un RCPG est amorcée par la liaison d’un ligand dans sa partie extra-cellulaire, modifiant ainsi ses propriétés dynamiques intrinsèques. Ces changements structuraux vont alors se répercuter le long des domaines trans-membranaires et promouvoir la dissociation de la Protéine-G hétéro-trimérique, de l’autre côté de la membrane, propageant ainsi le signal au compartiment intra-cellulaire. Ce processus peut être modulé par la liaison de nombreux autres partenaires des RCPGs. Malgré de nombreuses données structurales existantes, ces mécanismes restent encore mal connus à l’échelle moléculaire. Ainsi, la dynamique moléculaire s’est révélée être un outil formidable pour mieux comprendre ces mécanismes. Toutefois, les échelles de taille et de temps requises pour discuter de la dynamique de ces systèmes membranaires limitent ces études aux laboratoires ayant accès à une très grande puissance de calcul. L’objectif des travaux présentés dans ce manuscrit a été de prédire et de mieux comprendre la dynamique d’interaction de différents récepteurs de cette famille avec leurs partenaires, en développant un protocole de dynamique moléculaire, peu coûteux en ressources de calcul, combinant le champ de forces gros-grains MARTINI à un protocole de dynamique moléculaire « Replica-Exchange ».Dans un premier temps, nous présentons la validation de notre protocole pour la prédiction de la liaison de peptides à leur récepteur avec l’étude des peptides Neurotensine, agoniste du Récepteur de la Neurotensine-1, et CVX15, antagoniste du Récepteur Chemokine C-X-C de type-4. Nous montrons également que notre protocole est capable de prédire la sélectivité de plusieurs peptides dérivés de la Neurotensine envers plusieurs récepteurs sauvages et mutés, ne présentant qu’un résidu de différence.Dans un second temps, nous nous sommes intéressés à la dynamique de formation d’un hétéro-dimère de RCPGs impliquant le Récepteur de la Ghréline et le récepteur de la Dopamine D2, couplés aux protéines Gq et Gi respectivement. Ce modèle validé au laboratoire par des mesures LRET montre une interface impliquant une forte complémentarité entre les protéines-G. En se basant sur notre modèle, nous avons conçu et synthétisé des peptides inhibiteurs de la formation de cet hétéro-dimère de protéines-G.Enfin, nous présentons d’autres exemples d’applications de notre protocole et comment il peut être utilisé de concert avec l’expérience avec : la prédiction de la liaison de toxines de serpents aux Récepteurs de la Vasopressine-1a et V2 ; la prédiction de la liaison des peptides Ghréline et Leap2 au Récepteur GHSR-1a et la prédiction de la sélectivité de couplage de différents récepteurs aux peptides C-terminaux de la sous-unité α des protéines-G. / G-Protein Coupled Receptors form the largest family of human membrane proteins and are involved in many cellular signaling processes. Thus, they constitute a pool of already identified or potential pharmacological targets. The activation of a GPCR starts with the binding of a ligand in its extra-cellular part, further modifying its intrinsic dynamical properties. These structural rearrangements are then transmitted along the transmembrane domains and promote the dissociation of the G-protein on the other side of the bilayer, thus propagating the signal into the intra-cellular compartment. This activation process can be modulated by the binding of many other partners of GPCRs. Despite many structural data now available, these mechanisms are still badly known at the molecular scale. In agreement, molecular dynamics simulations appear to be a method of choice to get a better description of these mechanisms. Nevertheless, the size and the time scales required for the simulation of these membrane systems limit such studies to laboratories having access to large computational facilities.The objective of this work was to predict and get a dynamical view of the interactions of several GPCRs with their partners, by developing an affordable molecular dynamics protocol that combines the coarse-grained MARTINI force field to Replica-Exchange MD simulations.In a first step, we validated our protocol by showing its ability to predict the dynamical binding of peptides to their receptors, through the study of Neurotensin, an agonist of the Neurotensin-1 receptor and CVX15, an antagonist of the CXCR4 chemokine receptor. We also show that the same protocol is able to predict the selectivity of several Neurotensin derived peptides against several wild-type/mutated receptors differing by a single residue.In a second step, we were concerned by the dynamical assembly of a GPCR heterodimer involving the Ghrelin and the Dopamine D2 receptors, respectively coupled to Gq and Gi proteins. Our model was validated by LRET measurements confirming a large protein:protein interface and a high complementarity between G-proteins. Based on this model, we designed and synthesized some peptides able to inhibit the assembly of this G-proteins heterodimer.Finally, we describe other applications of our protocol and how it can be employed and confronted to experiments to : predict the dynamical binding of toxins from snake’s venom to the Vasopressin-1a and Vasopressin-2 receptors ; predict the binding of the Ghrelin and Leap2 peptides to their GHSR-1a receptor and predict the coupling selectivity of several receptors to peptides mimicking the C-terminus of the α subunit of G-proteins.

Page generated in 0.0676 seconds