Return to search

Méthodes Numériques pour la Simulation des Ecoulements Miscibles en Milieux Poreux Hétérogènes

Dans cette thèse, nous nous intéressons à des méthodes numériques pour un modèle d'écoulements incompressibles et miscibles ayant des application dans l'hydrogéologie et l'ingénierie pétrolière. Nous étudions et analysons un schéma numérique combinant une méthode d'éléments finis mixtes (EFM) et une méthode des volumes finis (VF) pour approcher le système couplé entre une équation elliptique (pression-vitesse) et une équation de convection-diffusion-réaction (concentration). Le schéma VF considérée est de type "vertex centred" semi-implicite en temps : explicite pour la convection et implicite pour la diffusion. On utilise un schéma de Godunov pour approcher le terme convectif et une approximation élément fini P1 pour le terme de diffusion. Nous montrons des résultats de stabilité L≂ estimations BV et le principe du maximum discret sous une condition CFL appropriée. Ensuite, nous montrons la convergence de la solution approchée obtenue par le schéma combiné EFM-VF vers la solution du problème couplé. La démonstration de la convergence se fait en plusieurs étapes : premièrement, on déduit la convergence forte de la solution approchée de la concentration dans L2(Q), en utilisant la stabilité L≂, les estimations BV et des arguments de compacité. Dans l'étape suivante, on étudie le schéma découplé EFM, en donnant des résultats de convergence pour la pression et la vitesse. Enfin, le processus de convergence de la solution approchée du schéma combiné EFM-VF vers la solution exacte est obtenu par passage à la limite et par unicité de solution pour le problème continu. Des simulations numériques académiques et réalistes pour des problèmes bidimensionnels confirment la stabilité et l'efficacité du schéma combiné. Enfin, nous étudions des estimateurs d'erreur a posteriori de type résiduel pour une équation de convection-diffusion-réaction discrétisée par un schéma VF "vertex centred" semi-implicite en temps. Nous introduisons deux sortes d'indicateurs. Le premier est local en temps et en espace et constitue un outil efficace pour l'adaptation du maillage à chaque pas de temps. Le second est global en espace mais local en temps et peut être utilisé pour l'adaptation en temps. Nous montrons que l'estimateur est une borne supérieure de l'erreur. Des résultats numériques d'adaptations de maillage sont présentés et montrent l'efficacité de la méthode. La partie logiciels de ce travail porte sur deux volets. Le premier a permis de réaliser un code de calcul 2D, MFlow, écrit en C++, pour la résolution du système des écoulements miscibles considérés dans cette thèse. Le second volet concerne la collaboration avec un groupe de chercheurs pour l'élaboration de la plate-forme Homogenizer++ réalisée dans le cadre du GDR MoMaS (http://momas.univ-lyon1.fr/).

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00009683
Date12 May 2005
CreatorsEl Ossmani, Mustapha
PublisherUniversité de Pau et des Pays de l'Adour
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds