Des progrès dans les batteries aux ions lithium sont en cours de développement afin de répondre, entre autres, à la demande croissante des hautes densités d'énergie et de puissance pour le réseau électrique et en particulier pour l'application dans les véhicules électriques. Ces derniers remplacent écologiquement les véhicules à moteur à combustion interne et leurs succès est principalement dû à leur efficacité énergétique supérieure, à leurs faibles coûts d'exploitation et à leur profil respectueux de l'environnement par rapport aux véhicules à essence.
Parmi les différents matériaux de cathode, les composés d'intercalation LiNixMnyCo1-x-yO2 (NMC) sont les meilleurs candidats pour des applications dans les batteries aux ions lithium à hautes performances. Des efforts sont en cours pour mettre en oeuvre des matériaux cathodiques à base de NMC riches en nickel pour répondre aux besoins environnementaux et énergétiques. Aussi séduisants soient-ils, ces matériaux de cathode présentent certains inconvénients liés à une forte réactivité, notamment à l'interface avec l'électrolyte. Pour contourner ces problèmes, des modifications de surface sont étudiées comme des solutions accessibles pour protéger le matériau actif et améliorer ses performances. Bien que diverses chimies et stratégies de revêtement soient publiées dans la littérature, notre approche consistant à combiner la synthèse et la modification de surface du matériau actif en une étape est aussi simple qu'efficace. Le présent manuscrit porte sur l’étude de ce composé.
Deux méthodes de revêtement de surface ont été étudiées et leur matériau revêtu résultant a été comparé au matériau non revêtu. Après une caractérisation détaillée de ces matériaux, des études électrochimiques ont été menées afin d’évaluer leurs performances. Enfin, notre NMC622 revêtu de LiAlO2 en une seule étape s'est avéré efficace pour contrer la dégradation de la capacité du NMC et pour améliorer la stabilité structurelle des particules, améliorant ainsi leur cycle de vie. / Advances in lithium-ion batteries are being developed in order to meet, among other things, the increasing demand for high energy and power densities for the electric power grid and especially for application in electric vehicles. The latter are a green replacement for internal combustion engine vehicles, and their success is mostly due to their higher energy efficiency, low operating costs and eco-friendliness compared to gasoline-powered vehicles.
Among various cathode materials, LiNixMnyCo1-x-yO2 (NMC) intercalation compounds are the best candidates for applications in high performance lithium-ion batteries. Efforts are underway to implement nickel-rich NMC-based cathode materials to meet environmental and energy needs. As appealing as they are, these cathode materials present certain drawbacks associated with high reactivity, especially at the interface with the electrolyte. To circumvent these issues, surface modifications are investigated as accessible solutions to protect the active material and enhance its performance. Although various coating chemistries and strategies are published in the literature, our approach of combining synthesis and surface modification of the active material in a single pot is as simple as it is efficient. The following manuscript will be covering the study of this material.
Two methods of surface coating were studied, and their resulting coated material was compared to the uncoated material. After a detailed characterization of these materials, electrochemical studies were carried out to evaluate their performance. Finally, our resulting one pot LiAlO2- coated NMC622 has shown to be effective in counteracting NMC capacity degradation and improving the structural stability of the particles, thereby improving their cycle- life.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/32325 |
Date | 05 1900 |
Creators | Touag, Ouardia |
Contributors | Dollé, Mickaël |
Source Sets | Université de Montréal |
Language | fra |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.0032 seconds