Spelling suggestions: "subject:"matériau dde cathode"" "subject:"matériau dee cathode""
1 |
A detailed study of the lithiation of iron phosphate as well as the development of a novel synthesis of lithium iron silicate as cathode material for lithium-ion batteriesGaloustov, Karen 03 1900 (has links)
Dans cette thèse nous démontrons le travail fait sur deux matériaux de cathodes pour les piles lithium-ion. Dans la première partie, nous avons préparé du phosphate de fer lithié (LiFePO4) par deux méthodes de lithiation présentées dans la littérature qui utilisent du phosphate de fer (FePO4) amorphe comme précurseur. Pour les deux méthodes, le produit obtenu à chaque étape de la synthèse a été analysé par la spectroscopie Mössbauer ainsi que par diffraction des rayons X (DRX) pour mieux comprendre le mécanisme de la réaction. Les résultats de ces analyses ont été publiés dans Journal of Power Sources.
Le deuxième matériau de cathode qui a été étudié est le silicate de fer lithié (Li2FeSiO4). Une nouvelle méthode de synthèse a été développée pour obtenir le silicate de fer lithié en utilisant des produits chimiques peu couteux ainsi que de l’équipement de laboratoire de base. Le matériau a été obtenu par une synthèse à l’état solide. Les performances électrochimiques ont été obtenues après une étape de broyage et un dépôt d’une couche de carbone. Un essai a été fait pour synthétiser une version substituée du silicate de fer lithié dans le but d’augmenter les performances électrochimiques de ce matériau. / In this thesis, we demonstrate work on two different cathode materials for lithium-ion batteries. First, the synthesis of lithium iron phosphate (LiFePO4) is reproduced from literature using two lithiation methods starting with amorphous iron phosphate (FePO4). For both reactions, the product at each step of the synthesis was analyzed using Mössbauer Spectroscopy and X-ray diffraction in order to gain further insight of the reaction mechanism. The results of this work were published in Journal of Power Sources.
The second cathode material of interest was lithium iron silicate (Li2FeSiO4). A novel synthetic method was developed to produce lithium iron silicate cost effectively starting with low cost precursors and basic laboratory equipment. The material was synthesized using a solid- state synthesis after milling and carbon coating, electrochemical performance was evaluated. An attempt was made to synthesize off-stoichiometric lithium iron silicate in order to increase the electrochemical performance of the material.
|
2 |
Novel approaches to the synthesis and treatment of cathode materials for lithium-ion batteriesRodrigues, Isadora R. 07 1900 (has links)
Nous avons mis au point une approche novatrice pour la synthèse d’un
matériau de cathode pour les piles lithium-ion basée sur la décomposition
thermique de l’urée. Les hydroxydes de métal mixte (NixMnxCo(1-2x)(OH)2) ont
été préparés (x = 0.00 à 0.50) et subséquemment utilisés comme précurseurs à la
préparation de l’oxyde de métal mixte (LiNixMnxCo(1-2x)O2). Ces matériaux,
ainsi que le phosphate de fer lithié (LiFePO4), sont pressentis comme matériaux
de cathode commerciaux pour la prochaine génération de piles lithium-ion. Nous
avons également développé un nouveau traitement post-synthèse afin
d’améliorer la morphologie des hydroxydes.
L’originalité de l’approche basée sur la décomposition thermique de
l’urée réside dans l’utilisation inédite des hydroxydes comme précurseurs à la
préparation d’oxydes de lithium mixtes par l’intermédiaire d’une technique de
précipitation uniforme. De plus, nous proposons de nouvelles techniques de
traitement s’adressant aux méthodes de synthèses traditionnelles. Les résultats
obtenus par ces deux méthodes sont résumés dans deux articles soumis à des
revues scientifiques.
Tous les matériaux produits lors de cette recherche ont été analysés par
diffraction des rayons X (DRX), microscope électronique à balayage (MEB),
analyse thermique gravimétrique (ATG) et ont été caractérisés
électrochimiquement. La performance électrochimique (nombre de cycles vs
capacité) des matériaux de cathode a été conduite en mode galvanostatique. / We have developed a novel approach to the synthesis of cathode
materials for lithium-ion batteries, based on the thermal decomposition of urea.
Mixed metal hydroxides (NixMnxCo(1-2x)(OH)2), x = 0.00 to 0.50, were prepared
and subsequently used as precursor for lithiated mixed metal oxide
(LiNixMnxCo(1-2x)O2). These materials along with lithium iron phosphate
(LiFePO4) are being considered as cathode materials for the next generation of
lithium-ion batteries. We have also developed new post-synthetic treatments on
the hydroxides in order to enhance the morphology, which would result in
improved electrode properties.
The novelty of this thesis is that for the first time mixed metal
hydroxides for use as precursors for lithium mixed oxides have been prepared
via a uniform precipitation technique from solution. In addition, we have
proposed new treatments techniques towards the more traditional synthesis
method for mixed metal hydroxides. The results obtained from these two
methods are summarized within two articles that were recently submitted to
peer-reviewed journals.
Within this thesis, all materials were analyzed with X-ray diffraction
(XRD), scanning electron microscopy (SEM), thermal gravimetric analysis
(TGA) and electrochemical measurements. The electrochemical performance
(capacity vs cycle number) of the cathode materials were tested
galvanostatically.
|
3 |
Novel approaches to the synthesis and treatment of cathode materials for lithium-ion batteriesRodrigues, Isadora R. 07 1900 (has links)
Nous avons mis au point une approche novatrice pour la synthèse d’un
matériau de cathode pour les piles lithium-ion basée sur la décomposition
thermique de l’urée. Les hydroxydes de métal mixte (NixMnxCo(1-2x)(OH)2) ont
été préparés (x = 0.00 à 0.50) et subséquemment utilisés comme précurseurs à la
préparation de l’oxyde de métal mixte (LiNixMnxCo(1-2x)O2). Ces matériaux,
ainsi que le phosphate de fer lithié (LiFePO4), sont pressentis comme matériaux
de cathode commerciaux pour la prochaine génération de piles lithium-ion. Nous
avons également développé un nouveau traitement post-synthèse afin
d’améliorer la morphologie des hydroxydes.
L’originalité de l’approche basée sur la décomposition thermique de
l’urée réside dans l’utilisation inédite des hydroxydes comme précurseurs à la
préparation d’oxydes de lithium mixtes par l’intermédiaire d’une technique de
précipitation uniforme. De plus, nous proposons de nouvelles techniques de
traitement s’adressant aux méthodes de synthèses traditionnelles. Les résultats
obtenus par ces deux méthodes sont résumés dans deux articles soumis à des
revues scientifiques.
Tous les matériaux produits lors de cette recherche ont été analysés par
diffraction des rayons X (DRX), microscope électronique à balayage (MEB),
analyse thermique gravimétrique (ATG) et ont été caractérisés
électrochimiquement. La performance électrochimique (nombre de cycles vs
capacité) des matériaux de cathode a été conduite en mode galvanostatique. / We have developed a novel approach to the synthesis of cathode
materials for lithium-ion batteries, based on the thermal decomposition of urea.
Mixed metal hydroxides (NixMnxCo(1-2x)(OH)2), x = 0.00 to 0.50, were prepared
and subsequently used as precursor for lithiated mixed metal oxide
(LiNixMnxCo(1-2x)O2). These materials along with lithium iron phosphate
(LiFePO4) are being considered as cathode materials for the next generation of
lithium-ion batteries. We have also developed new post-synthetic treatments on
the hydroxides in order to enhance the morphology, which would result in
improved electrode properties.
The novelty of this thesis is that for the first time mixed metal
hydroxides for use as precursors for lithium mixed oxides have been prepared
via a uniform precipitation technique from solution. In addition, we have
proposed new treatments techniques towards the more traditional synthesis
method for mixed metal hydroxides. The results obtained from these two
methods are summarized within two articles that were recently submitted to
peer-reviewed journals.
Within this thesis, all materials were analyzed with X-ray diffraction
(XRD), scanning electron microscopy (SEM), thermal gravimetric analysis
(TGA) and electrochemical measurements. The electrochemical performance
(capacity vs cycle number) of the cathode materials were tested
galvanostatically.
|
4 |
A detailed study of the lithiation of iron phosphate as well as the development of a novel synthesis of lithium iron silicate as cathode material for lithium-ion batteriesGaloustov, Karen 03 1900 (has links)
Dans cette thèse nous démontrons le travail fait sur deux matériaux de cathodes pour les piles lithium-ion. Dans la première partie, nous avons préparé du phosphate de fer lithié (LiFePO4) par deux méthodes de lithiation présentées dans la littérature qui utilisent du phosphate de fer (FePO4) amorphe comme précurseur. Pour les deux méthodes, le produit obtenu à chaque étape de la synthèse a été analysé par la spectroscopie Mössbauer ainsi que par diffraction des rayons X (DRX) pour mieux comprendre le mécanisme de la réaction. Les résultats de ces analyses ont été publiés dans Journal of Power Sources.
Le deuxième matériau de cathode qui a été étudié est le silicate de fer lithié (Li2FeSiO4). Une nouvelle méthode de synthèse a été développée pour obtenir le silicate de fer lithié en utilisant des produits chimiques peu couteux ainsi que de l’équipement de laboratoire de base. Le matériau a été obtenu par une synthèse à l’état solide. Les performances électrochimiques ont été obtenues après une étape de broyage et un dépôt d’une couche de carbone. Un essai a été fait pour synthétiser une version substituée du silicate de fer lithié dans le but d’augmenter les performances électrochimiques de ce matériau. / In this thesis, we demonstrate work on two different cathode materials for lithium-ion batteries. First, the synthesis of lithium iron phosphate (LiFePO4) is reproduced from literature using two lithiation methods starting with amorphous iron phosphate (FePO4). For both reactions, the product at each step of the synthesis was analyzed using Mössbauer Spectroscopy and X-ray diffraction in order to gain further insight of the reaction mechanism. The results of this work were published in Journal of Power Sources.
The second cathode material of interest was lithium iron silicate (Li2FeSiO4). A novel synthetic method was developed to produce lithium iron silicate cost effectively starting with low cost precursors and basic laboratory equipment. The material was synthesized using a solid- state synthesis after milling and carbon coating, electrochemical performance was evaluated. An attempt was made to synthesize off-stoichiometric lithium iron silicate in order to increase the electrochemical performance of the material.
|
5 |
Revêtement en LiAlO2 sur des particules d’un matériau d’électrode positive LiNi0,6Mn0,2Co0,2O2 pour batterie aux ions lithiumTouag, Ouardia 05 1900 (has links)
Des progrès dans les batteries aux ions lithium sont en cours de développement afin de répondre, entre autres, à la demande croissante des hautes densités d'énergie et de puissance pour le réseau électrique et en particulier pour l'application dans les véhicules électriques. Ces derniers remplacent écologiquement les véhicules à moteur à combustion interne et leurs succès est principalement dû à leur efficacité énergétique supérieure, à leurs faibles coûts d'exploitation et à leur profil respectueux de l'environnement par rapport aux véhicules à essence.
Parmi les différents matériaux de cathode, les composés d'intercalation LiNixMnyCo1-x-yO2 (NMC) sont les meilleurs candidats pour des applications dans les batteries aux ions lithium à hautes performances. Des efforts sont en cours pour mettre en oeuvre des matériaux cathodiques à base de NMC riches en nickel pour répondre aux besoins environnementaux et énergétiques. Aussi séduisants soient-ils, ces matériaux de cathode présentent certains inconvénients liés à une forte réactivité, notamment à l'interface avec l'électrolyte. Pour contourner ces problèmes, des modifications de surface sont étudiées comme des solutions accessibles pour protéger le matériau actif et améliorer ses performances. Bien que diverses chimies et stratégies de revêtement soient publiées dans la littérature, notre approche consistant à combiner la synthèse et la modification de surface du matériau actif en une étape est aussi simple qu'efficace. Le présent manuscrit porte sur l’étude de ce composé.
Deux méthodes de revêtement de surface ont été étudiées et leur matériau revêtu résultant a été comparé au matériau non revêtu. Après une caractérisation détaillée de ces matériaux, des études électrochimiques ont été menées afin d’évaluer leurs performances. Enfin, notre NMC622 revêtu de LiAlO2 en une seule étape s'est avéré efficace pour contrer la dégradation de la capacité du NMC et pour améliorer la stabilité structurelle des particules, améliorant ainsi leur cycle de vie. / Advances in lithium-ion batteries are being developed in order to meet, among other things, the increasing demand for high energy and power densities for the electric power grid and especially for application in electric vehicles. The latter are a green replacement for internal combustion engine vehicles, and their success is mostly due to their higher energy efficiency, low operating costs and eco-friendliness compared to gasoline-powered vehicles.
Among various cathode materials, LiNixMnyCo1-x-yO2 (NMC) intercalation compounds are the best candidates for applications in high performance lithium-ion batteries. Efforts are underway to implement nickel-rich NMC-based cathode materials to meet environmental and energy needs. As appealing as they are, these cathode materials present certain drawbacks associated with high reactivity, especially at the interface with the electrolyte. To circumvent these issues, surface modifications are investigated as accessible solutions to protect the active material and enhance its performance. Although various coating chemistries and strategies are published in the literature, our approach of combining synthesis and surface modification of the active material in a single pot is as simple as it is efficient. The following manuscript will be covering the study of this material.
Two methods of surface coating were studied, and their resulting coated material was compared to the uncoated material. After a detailed characterization of these materials, electrochemical studies were carried out to evaluate their performance. Finally, our resulting one pot LiAlO2- coated NMC622 has shown to be effective in counteracting NMC capacity degradation and improving the structural stability of the particles, thereby improving their cycle- life.
|
Page generated in 0.078 seconds