Return to search

Συγκολλητικό υλικό μεταλλικής βάσης (Ag + CuO) για χρήση σε κελιά καυσίμου στερεού ηλεκτρολύτη (SOFCs)

Οι υψηλές θερμοκρασίες λειτουργίας των κελιών καυσίμου στερεού ηλεκτρολύτη (Solid Oxide Fuel Cells - SOFCs), οδηγούν σε σημαντική επιβάρυνση των σημείων συνένωσης και στεγανότητας των στοιχείων των επί μέρους εξαρτημάτων των κελιών, που διατάσσονται σε στοιβάδες. Στα σημεία συνένωσης και εναλλακτικά στα μέχρι σήμερα χρησιμοποιούμενα συγκολλητικά, με βάση ενώσεις υαλοκεραμικών, εξετάζεται η χρήση ενός συνδυασμού υλικών αποτελούμενων από κεραμικό οξείδιο ως μονωτικό (isolation layer), καθώς κι ένα μεταλλικής βάσης υλικό ως συγκολλητικό. Κατά τη συγκόλληση στον αέρα, χωρίς χρήση κενού ή προστατευτικού αερίου, το μεταλλικής βάσης συγκολλητικό έρχεται σε επαφή με την επίστρωση μονωτικού (MgO, MgAl2O4 ή ένα μίγμα MgO + MgAl2O4) και με τα μεταλλικά στοιχεία των κελιών (φερριτικοί χάλυβες, Cr ≈ 22%, Mn ≈ 0.6%). Οι κύριες απαιτήσεις που πρέπει να ικανοποιεί το συγκολλητικό είναι η καλή προσαρμογή των διαφορετικών συντελεστών θερμικής διαστολής, μακροχρόνια αντοχή στις οξειδωτικές συνθήκες λειτουργίας των κελιών, ισχυρό δεσμό και απουσία χημικής φύσης αλληλεπιδράσεων στη σχηματιζόμενη διεπιφάνεια, για τη διατήρηση της μηχανικής ευστάθειας και της χαμηλής αεριοδιαπερατότητας της συγκόλλησης. Οι φυσικοχημικές και μηχανικές ιδιότητες του καθαρού αργύρου (Ag) ως συγκολλητικό, ικανοποιούν εν γένει τις παραπάνω απαιτήσεις, μειονεκτώντας όμως, ως προς τη δημιουργία ισχυρού δεσμού στις σχηματιζόμενες διεπιφάνειες. Προσθέτοντας στον Ag το διεπιφανειακά ενεργό οξείδιο του χαλκού (CuO), βελτιώνεται σημαντικά η διαβρεξιμότητα του κεραμικού (μονωτικό) και του μετάλλου (φερριτικός χάλυβας), από το τήγμα του κράματος Ag+CuO (γωνία επαφής θ < 90ο) και συνεπώς η ισχύς του δεσμού στις διεπιφάνειες..
Στόχος της παρούσας εργασίας είναι η επιλογή του κατάλληλου τρόπου προσθήκης του CuO στον Ag, ώστε να επιτευχθεί ένας ισχυρός δεσμός μεταξύ του συγκολλητικού και των υλικών προς συγκόλληση, αποφεύγοντας τον εκτεταμένο σχηματισμό προϊόντων αντίδρασης στις διεπιφάνειες. Πραγματοποιήθηκαν δύο τρόποι προσδιορισμού της γωνίας επαφής, της κεραμικής και μεταλλικής φάσης, με πειράματα διαβροχής. Στη συνέχεια, για τον έλεγχο της μακροχρόνιας ευστάθειας των συγκολλήσεων, μέρος των δοκιμίων υποβλήθηκαν σε θερμική ανόπτηση στους Τ=1073 Κ για χρονικό διάστημα t=1000 h, στον αέρα. Μετά το πέρας των πειραμάτων πραγματοποιήθηκε έλεγχος της διεπιφάνειας με μεθόδους ηλεκτρονικής μικροσκοπίας και μικροανάλυσης. / For mobile applications, the rapid heating rates and the high operating temperatures of solid oxide fuel cells (SOFCs) lead to increased stress on the joining and sealing points of the material components used for the development of planar SOFC stacks. At the junctions of the metallic components and alternatively to the currently used glass-ceramic solders the possible use of oxide ceramic as an insulation layer in combination with air braze filler metal was examined. The joining of the components in air, without the use of vacuum or inert gases, requires that the filler metal forms strong interfacial bonds with both the ceramic (insulating layer) and the additional sheet (ferritic steel). In addition, it should be resistant to oxidation at the high operating temperatures and its thermal expansion coefficient should match those of the materials to be joined. When ceramic and metal are joined, the presence of a ductile interfacial phase compensates the differences in the thermal expansion coefficients of the phases involved. Also, it is necessary for the mechanical stability of the bond, that the binding partners are well wetted by the interfacial phase.
Both Ag and Cu provide high mechanical strength, ductility, and thermal, as well as electrical conductivity. Although Ag is more expensive than Cu, it is preferred as a basis metal due to the lower process temperature and the lower oxygen affinity. A problem in using pure Ag is the poor wetting properties, at the liquid state, when in contact with oxide ceramic and steel. The high values of the contact angle (θ>120o) measured in oxide ceramic/Ag systems at oxygen concentrations of 0-3 ppm is reduced in air, but overall, the systems remain non-wetting (θ>90°). Good wetting (θ<<90o) is crucial for a strong interfacial bond between the phases in contact and simultaneously ensures the mechanical stability and gas tightness of the joints. Wetting can be improved by adding an interfacial active compound that is soluble in the noble metal solvent. A suitable material is CuO, which forms a pseudo-binary alloy with Ag in the solid state, as they present mutual solubility in the liquid state [11]. Depending on the percentage of CuO in the mixture, small contact angles (θ<20o) can be achieved in oxide ceramics/Ag + CuO systems.
Requirements on the ceramic insulation layer include a high electrical and thermal resistance, a high thermal expansion coefficient, stability under mechanical pressure, structural stability and oxidation resistance at high operating temperatures. The most suitable ceramics for these requirements are MgO, MgAl2O4 or a mixture of MgO and MgAl2O4.
The proposed Ag + CuO brazes come in contact with the ferritic steel of the interconnect part and with the additional sheet, as well as with the SOFC's electrolyte, 8 mol% Yttria-stabilized Zirconia (8YSZ), in the cell periphery. Ferritic steels, which have a Cr content above 20 wt% and a Mn content below 1 wt%, form a double outer layer in air that consists of Cr2O3 on the inside, towards the steel side, and a MnCr2O4 spinel phase on the outside. During the wetting experiment, the active CuO contained in the liquid Ag migrates towards the interface and a mixed oxide interface layer can be formed by reaction with the diffused cations Fe, Cr and Mn from the steel. The formation of the reaction zone improves the wetting behaviour (θ<90ο), but due to its higher brittleness, the mechanical interface stability of the composite can be reduced.
In the present work, the amount of CuO additive in Ag filler metal and the way in which this additive is applied, varied to achieve good wetting properties, and stable braze’s joints. The aim was to achieve a strong interfacial bond between the contacting phases and to prevent extensive interface reactions. Reaction products that form during the early stages of the brazing process must remain constant at the operating conditions. For this reason, the long-term stability after heat treatment in air, of the material combination oxide / brazes/ steel was examined after wetting experiments.

Identiferoai:union.ndltd.org:upatras.gr/oai:nemertes:10889/8186
Date30 December 2014
CreatorsΧατζημιχαήλ, Ραλλού
ContributorsΝικολόπουλος, Παναγιώτης, Αγγελόπουλος, Γεώργιος, Chatzimichael, Rallou, Αγγελόπουλος, Γεώργιος, Ματαράς, Δημήτριος, Μπεμπέλης, Συμεών
Source SetsUniversity of Patras
Languagegr
Detected LanguageEnglish
TypeThesis
Rights0

Page generated in 0.003 seconds