Return to search

我國不良資產處理方式之研究

近年來銀行逾期放款總額劇增,連帶使銀行產生處理龐大不動產擔保品之難題。本文目的希望能幫助銀行事先對擔保品進行分類並選擇適當處理方式,以減輕銀行處理不良資產擔保品之損失。文中以法拍屋個案財務分析模擬方式之結果將擔保品分成三類:一為二拍前拍定者,此類擔保品仍可採法拍處理;另一為第三拍拍定者,此類擔保品銀行可改採銀行自行委託拍賣處理;最後為四拍後拍定者,則可考慮讓售給資產管理公司處理。
實證結果發現,二拍前拍定擔保品之特徵屬性傾向較顯著者為有增建使用,建物持分面積為中坪數者,或建物類型為普通公寓,或位於市區,或有可點交之屬性者。第三拍拍定擔保品之特徵屬性傾向為位於五樓以上,或位於郊區,或有較多競標者參與。四拍後拍定之擔保品特徵屬性傾向為位於一樓,或有多層或多號使用情形,或建物持分面積為小坪數者,或建物類型為一般大廈,或位於舊市區,或有不可點交之屬性者。因此未來銀行可對不良資產依特徵屬性分類後,再採適當方式處理,較能減少損失並達成促進資金流通與健全金融機構之目標。
關鍵字:不良資產、資產管理、法拍屋、銀行拍賣 / Recently, the non-performing loans have become serious problems due to the trouble of the real estate collaterals faced by the financial institutions. This research aims on helping the banks to deal with the collaterals and reduce the loss of banks. According to the financial simulation, the collaterals are divided into three groups: 1.for the collaterals sold before the second bid, the financial institutions could take the way of legal auctions.2.for the collateral sold on the third bid , the financial institutions could take auction by themselves.S.for the collateral sold after the special bid, the financial institutions may consider to sell the AMC.
From the empirical result, we found that the obvious characters of the collaterals sold before the second bid include EXFL, MBUSPACE, INCITY, and GIVE. The characters of the collaterals sold on the third bid include UPFL, rural areas, and more bids. The characters of the collaterals sold after the special bid include SBUSPACE, API 2, OLDCITY, and without GIVE. Thus, in the future, the collaterals could be separated by the above three categories and the financial institutions can make the better decision to reduce the loss so that the internal economics structure is well established.
Keywords: collateral ' AMC ' foreclosure ' auction

Identiferoai:union.ndltd.org:CHENGCHI/G91NCCU3412012
Creators邱國勳
Publisher國立政治大學
Source SetsNational Chengchi University Libraries
Language中文
Detected LanguageEnglish
Typetext
RightsCopyright © nccu library on behalf of the copyright holders

Page generated in 0.0019 seconds