中小企業是台灣經濟貿易發展的命脈,過去以中小企業為主的出口貿易經濟體系,是創造台灣經濟奇蹟的主要動力。隨著2006年底新巴賽爾協定的正式實施,金融機構為符合新協定規範,亦需將中小企業信用評分程序,納入其徵、授信管理系統,以求信用風險評估皆可量化處理。故本研究將資料採礦技術應用於建置中小企業違約風險模型,針對內部評等法中的企業型暴險,根據新協定與金管會的準則,不僅以財務變數為主,也廣泛增加如企業基本特性及總體經濟因子等非財務變數,納入模型作為考慮變數,計算違約機率進而建置一信用評等系統,作為金融機構對於未來新授信戶之風險管理的參考依據。而本研究將以中小企業中製造傳統產業公司為主要的研究對象,建構企業違約風險模型及其信用評等系統,資料的觀察期間為2003至2005年。
本研究分別利用羅吉斯迴歸、類神經網路、和C&R Tree三種方法建立模型並加以評估比較其預測能力。研究結果發現,經評估確立以1:1精細抽樣比例下,使用羅吉斯迴歸技術建模的效果最佳,共選出六個變數作為企業違約機率模型之建模變數。經驗證後,此模型即使應用到不同期間或其他實際資料,仍具有一定的穩定性與預測效力,且符合新巴塞資本協定與金管會的各項規範,表示本研究之信用評等模型,確實能夠在銀行授信流程實務中加以應用。 / To track the development of Taiwan’s economy history, one very important factor that should never be ignored is the role of small enterprise businesses (the SMEs) which has always been played as a main driving force in the growth of Taiwan’s export trade economic system. With the formal implementation of Basel II in the end of 2006, there arises the need in the banking institutions to establish a credit scoring process for the SMEs into their credit evaluation systems in order to conform to the new accords and to quantify the credit risk assessment process.
Consequently, in this research we apply data mining techniques to construct the default risk model for the SMEs in accordance to the new accords and the guidelines published by the FSC (the Financial Supervisory Commission). In addition we not only take the financial variables as the core variables but also increase the non- financial variables such as the enterprise basic characteristics and overall economic factors extensively into the default risk model in order to formulate the probability of credit default risk as well as to establish the credit rating system for the enterprise-based at risk for default in the IRB in the second pillars of the Basel II. The data which used in this research is taken from the traditional SMEs industry ranging from the year of 2003 to 2005.
We use each of the following three methods, the Logistic Regression, the Neural Network and the C&R Tree, to build the model. Evaluation of the models is carried out using several statistics test results to compare the prediction accuracy of each model. Based on the result of this research under the 1:1 oversampling proportion, we are inclined to adopt the Logistic Regression techniques modeling as our chosen choice of model. There are six variables being selected from the dataset as the final significant variables in the default risk model. After multiple testing of the model, we believe that this model can withstand the testing for its capability of prediction even when applying in a different time frame or on other data set. More importantly this model is in conformity with the Basel II requirements published by the FSC which makes it even more practical in terms of evaluating credit risk default and credit rating system in the banking industry.
Identifer | oai:union.ndltd.org:CHENGCHI/G0096354004 |
Creators | 羅浩禎, Luo, Hao-Chen |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 中文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0021 seconds