• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

資料採礦於建立內部評等法之信用風險評等模型

李俊毅 Unknown Date (has links)
新巴塞爾資本協定的誕生為全球廣大的金融體系定下一個控制風險的準則,要求金融機構對於其自身風險提列一定的資本準備,以避免發生危機時,毫無應變的能力。金融機構若能依內部評等法計算出對應其自身風險的最低計提資本,即可在風險控制下避免準備過多的資本,以追求最大的利潤。 本研究對象為國內於1996至2005年分類為電子工業下之授信企業,違約企業佔總體資料5.51%,本研究遵循新巴塞爾資本協定中內部評等法之規範,及考量實務應用之普遍性與準確性,以羅吉斯迴歸法建置信用評等模型,並依金管會所建議之方向逐一對模型加以驗證,以符合在實務上運作之標準。 違約機率模型中包含了四個財務報表之變數,一個企業基本特性變數,根據拔靴驗證,不僅在AUC項目的表現相當良好,此模型之參數表現亦相當穩定,不受訓練外樣本而有所明顯的變動。在敏感度分析中,變動某一參數至最差信用等級,皆會讓違約機率有明顯上升。本研究授信資料一共橫跨十年的時間,符合內部評等法中需要五年以上歷史資料的要求,信用評等在轉移矩陣中的表現十分優秀,大致集中在對角線的部分,且幾乎沒有發生在前一年度評等為最差等級的企業在下一年度回復至評等最安全的前三等級的狀況。且透過十年間企業評等的轉移情形發現,電子工業產業在十年間大部分企業有下降的情形,僅有少部分是上升的狀況,顯示出電子工業產業在1996至2005此十年間可能有下滑之趨勢。
2

應用資料採礦技術於信用評等模型之建置-以服務業為例

劉建廷, Liu,Chien Ting Unknown Date (has links)
新巴賽爾協定已於2006年正式實施,國內各金融業為有效控制信用風險,近年來多致力於內部信用評等之建立;本研究透過建置違約預測模型的方式,讓金融機構可採用更科學且快速的方法預測客戶之違約機率,兼顧了金融機構的獲利與安全性。 本研究之研究對象為全國公開資料庫於民國85年至94年的服務業,其中違約客戶佔1.6%,非違約客戶佔98.4%;藉由企業財務報表與基本構面結合經濟變數,經誤差抽樣建立羅吉斯模型;經評估確立以1:2誤差抽樣比例下的羅吉斯迴歸模型效果最佳。接下來便針對模型去評估模型的有效性;最後,更進一步依照該模型所預測之違約機率,建立信用評分等級,同時檢視各等級內客戶之特性。 研究結果發現,以K-S Test以及ROC曲線進行模型正確性評估,本研究之模型有一定水準可以區隔正常授信戶及違約授信戶的能力;等級同質性檢定,也得到了同一等級內違約要素為同質且組內變異小的結果;表示本模型具有一定的穩定性與預測效力。
3

應用資料採礦技術建置中小企業傳統產業之信用評等系統 / Applications of data mining techniques in establishing credit scoring system for the traditional industry of the SMEs

羅浩禎, Luo, Hao-Chen Unknown Date (has links)
中小企業是台灣經濟貿易發展的命脈,過去以中小企業為主的出口貿易經濟體系,是創造台灣經濟奇蹟的主要動力。隨著2006年底新巴賽爾協定的正式實施,金融機構為符合新協定規範,亦需將中小企業信用評分程序,納入其徵、授信管理系統,以求信用風險評估皆可量化處理。故本研究將資料採礦技術應用於建置中小企業違約風險模型,針對內部評等法中的企業型暴險,根據新協定與金管會的準則,不僅以財務變數為主,也廣泛增加如企業基本特性及總體經濟因子等非財務變數,納入模型作為考慮變數,計算違約機率進而建置一信用評等系統,作為金融機構對於未來新授信戶之風險管理的參考依據。而本研究將以中小企業中製造傳統產業公司為主要的研究對象,建構企業違約風險模型及其信用評等系統,資料的觀察期間為2003至2005年。 本研究分別利用羅吉斯迴歸、類神經網路、和C&R Tree三種方法建立模型並加以評估比較其預測能力。研究結果發現,經評估確立以1:1精細抽樣比例下,使用羅吉斯迴歸技術建模的效果最佳,共選出六個變數作為企業違約機率模型之建模變數。經驗證後,此模型即使應用到不同期間或其他實際資料,仍具有一定的穩定性與預測效力,且符合新巴塞資本協定與金管會的各項規範,表示本研究之信用評等模型,確實能夠在銀行授信流程實務中加以應用。 / To track the development of Taiwan’s economy history, one very important factor that should never be ignored is the role of small enterprise businesses (the SMEs) which has always been played as a main driving force in the growth of Taiwan’s export trade economic system. With the formal implementation of Basel II in the end of 2006, there arises the need in the banking institutions to establish a credit scoring process for the SMEs into their credit evaluation systems in order to conform to the new accords and to quantify the credit risk assessment process. Consequently, in this research we apply data mining techniques to construct the default risk model for the SMEs in accordance to the new accords and the guidelines published by the FSC (the Financial Supervisory Commission). In addition we not only take the financial variables as the core variables but also increase the non- financial variables such as the enterprise basic characteristics and overall economic factors extensively into the default risk model in order to formulate the probability of credit default risk as well as to establish the credit rating system for the enterprise-based at risk for default in the IRB in the second pillars of the Basel II. The data which used in this research is taken from the traditional SMEs industry ranging from the year of 2003 to 2005. We use each of the following three methods, the Logistic Regression, the Neural Network and the C&R Tree, to build the model. Evaluation of the models is carried out using several statistics test results to compare the prediction accuracy of each model. Based on the result of this research under the 1:1 oversampling proportion, we are inclined to adopt the Logistic Regression techniques modeling as our chosen choice of model. There are six variables being selected from the dataset as the final significant variables in the default risk model. After multiple testing of the model, we believe that this model can withstand the testing for its capability of prediction even when applying in a different time frame or on other data set. More importantly this model is in conformity with the Basel II requirements published by the FSC which makes it even more practical in terms of evaluating credit risk default and credit rating system in the banking industry.
4

銀行對中小企業授信評等模型

胡美蓉 Unknown Date (has links)
本研究主要是應用二元分量迴歸BQR(Binary Quantile Regression)模型的方法估計銀行對中小企業授信之信用評等,以期提早偵測出可能會有違約還款的企業,達到授信時的預警效果。信用評等目的為協助金融機構在貸放前更明確的瞭解企業的信用風險,並具以衡量是否核准貸款的重要依據。在過去的研究中最廣為應用的計量方法主要為有母數(parametric)區別迴歸模型,包括Logit Model和Probit Model等區別迴歸模型,這二種模型在正確的條件設定之下,模型的預測結果可以說相當的好,但若是估計資料的分配並未符合所設定的條件,或者是資料具有無法觀察到的異質變異(heteroskedastic),則估計結果會有顯著的偏誤。傳統區別模型的一般設定如下,假設發生違約的機率給定為: ,此處 表示實際上是否真的發生違約逾期還款的情形。 為了在估計時更能控制風險,最近許多有關信用評等的研究方法傾向使用半無母數(semiparametric)單一指數模型以及無母數(nonparametric)的估計方法,如類神經網路與歸納樹(classification trees)分析方法。 而本文主要是將半無母數的分量迴歸區別模型和過去以有母數為主的Probit及Logit區別迴歸模型做比較。Koenker和Bassett(1978)提出分量迴歸估計方法(Quantile Regression Methods),分量迴歸可以更完整的反應出共變異效果對被解釋變數的影響,除此之外,分量迴歸模式提供使用上較多的彈性,在估計時無需對母體的分配做假設,另外,和傳統的最小平方(OLS)估計法不同在於OLS給予估計參數的分量為50%,因此OLS估計出的迴歸線只有一條,因此分析解釋變數對被解釋變數的影響是平均效果;分量迴歸區別模型則給予估計參數不同百分比的分量,從而可在相同樣本下得到不同的分量迴歸線,觀察解釋變數對於被解釋變數影響程度的變化,因此藉由不同分量估計出不同的迴歸係數 ,可以更加瞭解整體分配的全貌。
5

應用大數據於信用評等之模型探討 / The Application of Big Data on Credit Scoring Model

林瑀甯 Unknown Date (has links)
信用風險或信用違約意旨金融機構提供給客戶服務卻未得償還的機率,故其在銀行信貸決策的領域是常被鑽研的對象,因為其對於金融機構所扮演的角色尤其重要,對商業銀行來說更是常難以解釋或控制,然而拜現今進步的科技所賜,金融機構可以藉由操控較過去低的成本即可進一步發展強健且精煉的系統與模型去做預測還有信用風險的控管,有鑑於對客戶的評分自大數據時代來臨起,即使是學生亦開始有了可以評鑑的痕跡,憑藉前人所實驗或仰賴的基本考量面向如客戶基本資料、財力狀況或是其於該公司今昔的借貸訊息,再輔以藉由開放資料所帶來的資訊,發想可能影響信用違約率的變數如外在規範對該客戶的紀錄,想驗證是否真有尚可開發的方向,若有則其影響可以到多深。 眾所皆知從過去到現在即有很多種方法被開創以及提出以預測信用違約率,當然所使用的方法和金融機構本身的複雜性、規模大小以及信貸類型有關,最常見的有判別分析,但其對於變數有嚴格的假設,而新興的方法神經網路可以克服判別分析的缺陷且預測的效能也不錯,但神經網路只給予預測結果而運算過程是未知的,對於想要了解變數間的關係無濟於事,故還是選擇從可以對二元分類做預測亦可以藉由模型係數看到應變數和自變數間關係的羅吉斯迴歸方法著手,而研究過程即是依著前人對於羅吉斯迴歸在信用風險上的繩索摸索,將資料如何清理、變數如何轉換、模型如何建立以及最後如何篩選做一個完整的陳述,縱然長道漫漫,對於研究假設在結果終得驗證也始見曙光,考慮的新面向確有其影響力,而在模型係數上也看到其影響的大小,為了更彰顯羅吉斯迴歸對於變數間提供的訊息,故在最後將研究結果以較文字易讀的視覺化方式作呈現。 / Credit risk or credit default means the probability of non-repayment that banks or financial institutions get after they provide services to their customers. Credit risk is also studied intensively in the field of bank lending strategy because it’s usually hard to interpret and control. However, thanks to advanced technology nowadays, banks can manipulate reduced cost to develop robust and well-trained system and models so as to predict and mange credit risk. In the light of the score on customers from the beginning of big data era, every single one can be tracked to assess even though he or she is student. Relying on common facets like personal information, financial statement and past relationship of loan in a specific bank, come up with possible variables like regulations which influence credit risk according to information from open data. Try to verify if there is a new aspect of modeling and how far it effects. As everyone knows, there are several created and offered methodologies in order to predict credit default. They differ from complexity of banks and institutions, size and type of loan. One of the most popular method is discriminant analysis, but variables are restricted to its assumption. Neural network can fix the flaws of the assumption and work efficiently. Considering the unknown process of calculation in neural network, choose logistic regression as research method which can see the relationship between variables and predict the binary category. With the posterior research on credit risk, make a complete statement about how to clean data, how to transform variables and how to build or screen models. Although the procedure is complicated, the result of this study still validates original hypothesis that new aspect indeed has an impact on credit risk and the coefficient shows how deep it affects.

Page generated in 0.0222 seconds