Dans le premier chapitre, on démontre divers résultats sur le plus grand quotient du groupe fondamental étale premier aux caractéristiques, parmi lesquels la formule de Künneth et l'invariance par changement de corps séparablement clos pour les schémas de type fini sur un corps. Ces énoncés sont déduits de faits généraux sur les images directes de champs, une fois spécialisés au cas des torseurs sous un groupe constant fini d'ordre inversible sur la base. Des résultats analogues<br />pour le groupe fondamental modéré sont également discutés.<br /><br />Au deuxième chapitre, on déduit de la formule du conducteur, conjecturée par S. Bloch, celle de P. Deligne exprimant, dans le cas d'une singularité isolée, la dimension totale des cycles évanescents en fonction du nombre de Milnor.<br />En particulier, la formule de Deligne est établie en dimension relative un.<br /><br />Dans le troisième chapitre, on compare les 1-isomotifs de P. Deligne sur un corps avec la théorie de V. Voevodsky en dimension inférieure à 1.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00004093 |
Date | 30 June 2003 |
Creators | Orgogozo, Fabrice |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds