Return to search

Geometric cycles on moduli spaces of curves

Ziel dieser Arbeit ist die explizite Berechnung gewisser geometrischer Zykel in Modulräumen von Kurven. In den letzten Jahren wurden Divisoren auf $\Mbar_{g,n}$ ausgiebig untersucht. Durch die Berechnung von Klassen in Kodimension 1 konnten wichtige Ergebnisse in der birationalen Geometrie der Räume $\Mbar_{g,n}$ erzielt werden. In Kapitel 1 geben wir einen Überblick über dieses Thema. Im Gegensatz dazu sind Klassen in Kodimension 2 im Großen und Ganzen unerforscht. In Kapitel 2 betrachten wir den Ort, der im Modulraum der Kurven vom Geschlecht 2k durch die Kurven mit einem Büschel vom Grad k definiert wird. Da die Brill-Noether-Zahl hier -2 ist, hat ein solcher Ort die Kodimension 2. Mittels der Methode der Testflächen berechnen wir die Klasse seines Abschlusses im Modulraum der stabilen Kurven. Das Ziel von Kapitel 3 ist es, die Klasse des Abschlusses des effektiven Divisors in $\Mbar_{6,1}$ zu berechnen, der durch punktierte Kurven [C, p] gegeben ist, für die ein ebenes Modell vom Grad 6 existiert, bei dem p auf einen Doppelpunkt abgebildet wird. Wie Jensen gezeigt hat, erzeugt dieser Divisor einen extremalen Strahl im pseudoeffektiven Kegel von $\Mbar_{6,1}$. Ein allgemeines Ergebnis über gewisse Familien von Linearsystemen mit angepasster Brill-Noether-Zahl 0 oder -1 wird eingeführt, um die Berechnung zu vervollständigen. / The aim of this thesis is the explicit computation of certain geometric cycles in moduli spaces of curves. In recent years, divisors of $\Mbar_{g,n}$ have been extensively studied. Computing classes in codimension one has yielded important results on the birational geometry of the spaces $\Mbar_{g,n}$. We give an overview of the subject in Chapter 1. On the contrary, classes in codimension two are basically unexplored. In Chapter 2 we consider the locus in the moduli space of curves of genus 2k defined by curves with a pencil of degree k. Since the Brill-Noether number is equal to -2, such a locus has codimension two. Using the method of test surfaces, we compute the class of its closure in the moduli space of stable curves. The aim of Chapter 3 is to compute the class of the closure of the effective divisor in $\M_{6,1}$ given by pointed curves [C,p] with a sextic plane model mapping p to a double point. Such a divisor generates an extremal ray in the pseudoeffective cone of $\Mbar_{6,1}$ as shown by Jensen. A general result on some families of linear series with adjusted Brill-Noether number 0 or -1 is introduced to complete the computation.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/17170
Date24 May 2012
CreatorsTarasca, Nicola
ContributorsFarkas, Gavril, Faber, Carel, Grushevsky, Samuel
PublisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
RightsNamensnennung, http://creativecommons.org/licenses/by/3.0/de/

Page generated in 0.0107 seconds