Return to search

Relaxation and decomposition methods for mixed integer nonlinear programming

Die Habilitationsschrift beschäftigt sich mit Theorie, Algorithmen und Software zur Lösung von nichtkonvexen, gemischt-ganzzahligen, nichtlinearen Optimierungsproblemen (MINLP). Sie besteht aus 14 Kapiteln, die in zwei Teile gegliedert sind. Im ersten Teil werden grundlegende Optimierungswerkzeuge beschrieben und im zweiten Teil werden Lösungsalgorithmen vorgestellt. Fast alle vorgeschlagenen Algorithmen wurden als Teil der objektorientierten C++ Bibliothek LaGO implementiert. Numerische Experimente mit verschiedenen MINLP-Problemen zeigen die Möglichkeiten und Grenzen dieser Verfahren. / This book is concerned with theory, algorithms and software for solving nonconvex mixed integer nonlinear programs. It consists of two parts. The first part describes basic optimization tools, such as block-separable reformulations, convex and Lagrangian relaxations, decomposition methods and global optimality criteria. The second part is devoted to algorithms. Starting with a short overview on existing methods, we present deformation, rounding, partitioning and Lagrangian heuristics, and a branch-cut-and-price algorithm. The algorithms are implemented as part of an object-oriented library, called LaGO. We report numerical results on several mixed integer nonlinear programs to show abilities and limits of the proposed solution methods.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/14614
Date10 March 2005
CreatorsNowak, Ivo
ContributorsHelmberg, Christoph, Grossmann, Ignacio, Sahinidis, Nikolaos, Römisch, Werner
PublisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0025 seconds