ATAD2 est un facteur très conservé mais peu caractérisé qui possède différents domaines fonctionnels : un domaine AAA ATPase et un bromodomaine (BRD). Normalement, ATAD2 est exprimé fortement dans les cellules germinales males ainsi que dans les cellules souches embryonnaires (cellules ES). De plus, la surexpression de cette protéine a été détectée dans de nombreux cancers. Il a été montré qu'ATAD2 agit comme co-activateur des récepteurs aux androgènes et aux œstrogènes. Cette protéine semble aussi agir comme co-facteur de l’oncogène Myc et joue un rôle dans la voie pRb/E2F. La surexpression d’ATAD2 prédit un mauvais prognostic dans les cancers du poumon et du sein. Toutes ces caractéristiques font d'ATAD2 un candidat de choix comme biomarqueur pronostic et une cible potentielle pour des agents thérapeutiques dans le cadre de cancers agressifs.Dans ce projet de thèse, nous montrons que hATAD2 interagit avec l'histone H4 acétylée via son bromodomaine, et que le domaine ATPase est responsable de la multimérisation d’ATAD2 et permet au BRD d’interagir avec les lysines acétylées dans les cellules. Des investigations complémentaires, comprenant notamment des études structurales, montrent que le BRD d'ATAD2 est responsable de son interaction spécifique avec la forme acétylée de la lysine 5 de l'histone H4. Nous avons aussi analysé le domaine AAA ATPase et découvert des éléments qui contrôlent son rôle dans la multimérisation des protéines. De plus, nous avons étudié ATAD2 dans la lignée de cellules cancéreuses pulmonaires, H1299, ainsi que dans les cellules ES et démontré que ce facteur est essentiel pour la prolifération des cellules en l'absence des facteurs de croissance. En combinant des approches ChIP-seq, ChIP-protéomics et RNA-seq dans les cellules ES, nous avons montré qu'ATAD2 est très enrichi dans les régions à haute activité transcriptionnelle et maintient la chromatine accessible pour les facteurs impliqués dans les activités de la chromatine. Ces données indiquent qu'ATAD2, dans son contexte physiologique, assure un rôle essentiel dans les activités générales de la chromatine, telles que la transcription, en maintenant l'accessibilité de la chromatine pour les facteurs de transcription.Enfin, afin de caractériser la structure d’ATAD2 et celle de son homologue dans Schizosaccharomyces pombe, ABOI, différents fragments contenants le domaine AAA ATPase ont été produits dans des bactéries ainsi que dans des cellules d'insectes en utilisant des vecteurs d’expression de baculovirus. Les conditions de production de fragments solubles ont été établies et certains de ces fragments ont été purifiés. Néanmoins, l’obtention de la structure cristalline de l'ATAD2 nécessite des travaux supplémentaires. / ATAD2 is an evolutionarily conserved but poorly characterized factor that bears different types of func¬tional domains: an AAA ATPase domain and a bromodomain (BRD). ATAD2 is normally highly ex¬pressed in male germ cells and in embryonic stem cells (ESC), however the overexpression of this protein has been detected in a large variety of independent cancers. ATAD2 is proposed to act as a co-activator of androgen and estrogen receptors and in addition, this protein also seems to act as a co-factor for Myc oncogene and plays a role in the pRb/E2F pathway. Moreover, the overexpression of ATAD2 predicts poor prognosis in lung and breast cancers. All of these characteristics make ATAD2 a valuable prognosis biomarker and a promising therapeutic target in aggressive cancers.Herein, we show that hATAD2 binds to acetylated H4 tail through its BRD, and that its ATPase domain enables ATAD2 multimerization, affecting the ability of the BRD to bind acetylated lysine in cells. Additional investigations, including structural studies, show that ATAD2’s BRD is responsible for its specific interaction with acetylated lysine 5 of histone H4. We have also functionally analyzed the AAA ATPase domain and discovered elements that control its role in protein multimerization. In addition, we studied ATAD2 in ESC and in the H1299 lung cancer cell line, and demonstrated that this factor has crucial roles in cell proliferation in the absence of growth factors. Moreover, by using a combination of ChIP-seq, ChIP-proteomics and RNA-seq experiments in ESC, we found that ATAD2 is highly enriched in regions with high transcriptional activity and that it keeps chromatin accessible for chromatin templated factors. These data indicate that ATAD2 in its physiological context ensures a critical role in general chromatin-templated activities, such as transcription, by maintaining the accessibility of chromatin for transcription factors. Finally, in order to structurally characterize either ATAD2 or its homologue in Schizosaccharomyces pombe, ABOI, different fragments containing the AAA ATPase domain were produced in bacteria as well as in insect cells using baculovirus expression vectors. Conditions to produce soluble fragments were established and some of these fragments were purified. Nonetheless, solving the crystal structure of ATAD2 still requires further investigation.
Identifer | oai:union.ndltd.org:theses.fr/2017GREAV048 |
Date | 18 October 2017 |
Creators | Jamshidikia, Mahya |
Contributors | Grenoble Alpes, Khochbin, Saadi |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds