Organic semiconductors are being investigated as an alternative to more traditional materials such as silicon, for the fabrication of different types of electronic devices. The advantages of such materials are flexibility, lightness and quick and low cost device production methods. In this thesis we analyze some small molecule organic semiconductors for their use in devices such as thin film transistors and photovoltaic cells. These materials, deposited in thin films on glass by thermal vacuum evaporation, are copper phthalocyanine (CuPc) and pentacene, p-type materials, fullerene (C60), PTCDA and PTCDI-C13, that are n-type. We analyze their optical properties by optical transmittance measurement and photothermal deflection spectroscopy (PDS). By such means we obtain the absorption coefficient of the materials in sub-gap region (near infrared - NIR), directly related with the density of electronic states. Furthermore, we examine thin film microstructure by X-ray diffraction (XRD) in order to observe if it is amorphous or polycrystalline. The data obtained by optical methods are used to calculate optical gap (Eg) and Urbach energy (Eu). The former of these parameters gives important information about the absorption properties of the material in the visible and NIR ranges of the spectrum, while the latter about the structural disorder in the film. Since a clear model for organic semiconductors is still not defined, in both cases we employ models that are usually considered in the case of inorganic semiconductors. The XRD analysis indicates that, in the deposition conditions used in this work, only C60 grows with amorphous structure while all the other materials are polycrystalline. Such result is used to determine which law can be used to estimate the optical gap: the general law for direct allowed electronic transitions in semiconductors for polycrystalline materials or the Tauc law for amorphous ones. The Urbach law, usually employed to have an idea about the amount of disorder in amorphous films, is used for all our materials as an indicator of thin film quality.
Furthermore, we examine the stability of the materials over time under exposure to direct radiation and atmosphere and to compare the results with the ones obtained for samples simply exposed to atmosphere. PTCDA and CuPc have demonstrated to be stable against oxidizing agents that are present in atmosphere while the other materials suffer modifications in their optical properties. Such variations, principally located in the sub-gap region of the absorption region, indicate that an increase in the absorption level is obtained, probably due to the presence of defects that could work as charge carrier traps. Annealing treatments are performed on the degraded materials to observe that the degradation process is not reversible. Organic photovoltaic cells always include a heterojunction between two semiconductors, so the same study is performed on mixtures of two materials, a p-type and an n-type one, testing all the possible combinations between the investigated materials. The films are obtained by co-evaporating the two materials in 1:1 proportion. A mixture containing a degrading material also degrades. Heat treatments performed on the samples yield a partial crystallization of some materials but not of others and fail to recover the original optical properties when degradation occurs. Finally, two types of devices are fabricated: thin film transistors (TFTs) using PTCDI-C13 and diodes with CuPc. In the first case we obtain very interesting results, determining that the devices work as typical n-type channel transistors. An analysis of the device characterizations allows us to determine the density of electronic states in the channel obtaining a result that is very similar to the one obtained by optical means on the same material. In the second case we observe the typical diode behaviour but the response with light of such devices, characterized by having a structure similar to the one of Schottky type solar cells, is very low. / Los semiconductores orgánicos están siendo investigados como alternativos a materiales más tradicionales, como el silicio, para la fabricación de varios tipos de dispositivos electrónicos. Las ventajas que presentan tales materiales son flexibilidad, ligereza, rapidez y bajo coste de los métodos de producción de los dispositivos orgánicos.
En esta tesis se analizan algunos semiconductores orgánicos de molécula pequeña para su aplicación en dispositivos como los transistores en capa delgada y las células fotovoltaicas. Tales materiales, depositados en capa delgada por evaporación térmica en vacío, son ftalocianina de cobre (CuPc) y pentaceno, de tipo p, fullereno (C60), PTCDA y PTCDI-C13, de tipo n. Se analizan las propiedades ópticas de ellos por medio de la medida de Trasmitancia Óptica y de la Espectroscopia de Deflección Fototérmica (PDS). Además se analiza la microestructura de las capas delgadas por difracción de rayos X (XRD) con el objetivo de observar si las capas tienen estructura amorfa o policristalina. Los datos son utilizados para calcular el gap óptico (Eg) y la energía de Urbach (Eu). Se analiza la estabilidad de los materiales con el pasar del tiempo y la exposición a irradiación directa, por un lado, y a la atmosfera, por otro lado. El fullereno es el único material que se deposita con estructura amorfa. Además se ha observado que CuPc y PTCDA son estables frente a la degradación por exposición a agentes oxidantes.
Las células fotovoltaicas orgánicas incluyen siempre una heterounión entre dos semiconductores, así que se repite el mismo estudio sobre mezclas de dos materiales, uno de tipo p y otro de tipo n, probando todas las combinaciones posibles con los materiales analizados. Se observa que en una mezcla que incluya un material que presenta inestabilidad también hay degradación. Los tratamientos térmicos efectuados sobre las muestras han permiten obtener una parcial cristalización de algunos materiales pero no de otros y no llevan a recuperar las propiedades ópticas originarias, perdidas con la degradación.
Finalmente, se fabrican dos tipos de dispositivos: TFTs de PTCDI-C13 y diodos de CuPc. En el primer caso se obtienen resultados interesantes, detectando que los dispositivos funcionan como típicos transistores en capa delgada de tipo n. En el segundo caso se observa el típico comportamiento de los diodos. Sin embargo, la respuesta con luz de tales dispositivos, de estructura análoga a fotocélulas de tipo Schottky, es muy escasa.
Identifer | oai:union.ndltd.org:TDX_UB/oai:www.tdx.cat:10803/21620 |
Date | 12 March 2010 |
Creators | Stella, Marco |
Contributors | Puigdollers i González, Joaquim, Andreu i Batallé, Jordi, Universitat de Barcelona. Departament de Física Aplicada i Òptica |
Publisher | Universitat de Barcelona |
Source Sets | Universitat de Barcelona |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion |
Format | 222 p., application/pdf |
Source | TDX (Tesis Doctorals en Xarxa) |
Rights | info:eu-repo/semantics/openAccess, ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. |
Page generated in 0.0018 seconds