This project treats Additive Manufacturing (AM) for metallic material and the question if it is suitable to be used in the aeronautics industry. AM is a relatively new production method where objects are built up layer by layer from a computer model. The art of AM allows in many cases more design freedoms that enables production of more weight optimized and functional articles. Other advantages are material savings and shorter lead times which have a large economic value. An extensive literature study has been made to evaluate all techniques on the market and characterize what separates the different processes. Also machine performance and material quality is evaluated, and advantages and disadvantages are listed for each technique. The techniques are widely separated in powder bed processes and material deposition processes. The powder bed techniques allow more design freedom while the material deposition techniques allow production of large articles. The most common energy source is laser that gives a harder and more brittle material than the alternative energy sources electron beam and electric arc. Two specific techniques have been selected to investigate further in this project. Electron Beam Melting (EBM) from Arcam and Wire fed plasma arc direct metal deposition from Norsk Titanium (NTiC). EBM is a powder bed process that can manufacture finished articles in limited size when no requirements are set on tolerances and surface roughness. NTiC uses a material deposition process with electric arc to melt wire material to a near-net shape. The latter method is very fast and can produce large articles, but have to be machined to finished shape. A material investigation have been made where Ti6Al4V-material from both techniques have been investigated in microscope and tested for hardness. For the EBM-material have also surface roughness and weldability been investigated since the limited building volume often requires welding. The materials have mechanical properties better than cast material with respect to strength and ductility, but not as good as wrought material. Test results show that the difference in mechanical properties in different directions is small, even though the material has an inhomogeneous macrostructure with columnar grains in the building direction. The EBM-material has a finer microstructure and a stronger material and, in combination with improved design freedom, this technique is most suitable for aerospace articles when the weldability is good and it is possible to surface work where requirements of the surface roughness are set. Keywords: Additive Manufacturing, Aeronautics, Titanium / Det här projektet behandlar området Additiv Tillverkning (AM) för metalliska material och undersöker om det är lämpligt att använda vid produktion inom flygindustrin. AM är en relativt ny tillverkningsmetod där föremål byggs upp lager för lager direkt ifrån en datormodell. Teknikområdet tillåter i många fall större konstruktionsfriheter som möjliggör tillverkning av mer viktoptimerade och funktionella artiklar. Andra fördelar är materialbesparing och kortare ledtider vilket har ett stort ekonomiskt värde. En omfattande litteraturstudie har gjorts för att utvärdera alla tekniker som finns på marknaden och karakterisera vad som skiljer de olika processerna. Även maskiners prestanda och kvalité på tillverkat material utvärderas, och för varje teknik listas möjligheter och begränsningar. Teknikerna delas grovt upp i pulverbäddsprocesser och material deposition-processer. Pulverbäddsteknikerna tillåter större friheter i konstruktion, medan material deposition-processerna tillåter tillverkning av större artiklar. Den vanligaste energikällan är laser som ger ett starkare men mer sprött material än de alternativa energikällorna elektronstråle och ljusbåge. Två specifika tekniker har valts ut för att undersöka närmare i detta projekt. Electron Beam Melting (EBM) från Arcam och Wire fed plasma arc direct metal deposition från Norsk Titanium (NTiC). EBM är en pulverbäddsprocess som kan tillverka färdiga artiklar i begränsad storlek då låga krav ställs på toleranser och ytfinhet. NTiC använder en material deposition-process med en ljusbåge för att smälta ner trådmaterial till en nära färdig artikel. Den senare metoden är mycket snabb och kan tillverka stora artiklar, men måste maskinbearbetas till slutgiltig form. En materialundersökning har genomförts där Ti6Al4V-material från båda teknikerna har undersökts i mikroskop och testats för hårdhet. För EBM-material har även ytfinhet och svetsbarhet undersökts då begränsad byggvolym i många fall kräver fogning. Materialen har egenskaper bättre än gjutet material med avseende på styrka och duktilitet, men inte lika bra som valsat material. Provning visar att skillnaden på mekaniska egenskaper i olika riktningar är liten även fast materialet har en inhomogen makrostruktur med kolumnära korn i byggriktningen. EBM ger en finare mikrostruktur och ett starkare material och, tillsammans med de ökade konstruktionsfriheterna, så är det den tekniken som är bäst lämpad för flygplansartiklar då svetsbarheten är god och det finns möjlighet att bearbeta ytan till slutgiltigt krav. Nyckelord: Additiv Tillverkning, Flygteknik, Titan
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-156887 |
Date | January 2014 |
Creators | Ek, Kristofer |
Publisher | KTH, Maskinkonstruktion (Inst.) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | MMK 2014:19 MKN 109 |
Page generated in 0.0093 seconds