Cette thèse porte sur les décompositions en ondelettes M-bandes en arbre dual ainsi que sur leur application à l'analyse et la restauration d'images. Ces décompositions permettent d'obtenir une analyse multi-échelles, directionnelle et locale des images. Elles s'inscrivent donc dans la perspective de travaux récents visant à mieux représenter les informations géométriques (textures, contours) et les préserver lors de traitements. Ce travail s'appuie sur les travaux antérieurs de N. Kingsbury et I. Selesnick portant sur la construction de décompositions en ondelettes formant des paires de Hilbert (approchées). Ces auteurs ont établi divers résultats concernant le cas dyadique et l'une de nos contributions a été de montrer qu'il était possible de généraliser leurs conclusions et de montrer de nouveaux résultats dans le cas M-bandes. Les représentations proposées présentent de nombreux avantages notamment en termes d'invariance par translation de l'analyse et de sélectivité directionnelle. Nous avons établi les conditions que doivent satisfaire les bancs de filtres en arbre dual servant à l'analyse et à la synthèse des signaux traités. Nous avons également étudié les pré-traitements qu'il est nécessaire d'appliquer à des données discrètes. Ces décompositions introduisant typiquement une redondance d'un facteur 2 (dans le cas réel, et de 4 dans le cas complexe), elles constituent des trames à partir desquelles on peut calculer une reconstruction optimale. Ces nouvelles transformées ont finalement été généralisées aux cadres biorthogonal et complexe. Notre volonté d'appliquer ces outils d'analyse au débruitage de signaux nous a conduit à l'étude des propriétés statistiques des coefficients issus de la décomposition M-bandes en arbre dual d'un processus aléatoire stationnaire au sens large. Nous avons tout d'abord calculé les statistiques au second ordre de ces coefficients et nous avons étudié le rôle du post-traitement dans le calcul des corrélations. Quelques résultats asymptotiques concernant les corrélations d'un couple de coefficients primal/dual ont également été obtenus. Les inter-corrélations entre les ondelettes primale et duale jouant un rôle clé dans notre étude, nous en avons fourni des expressions exactes pour quelques familles d'ondelettes usuelles. Des simulations numériques nous ont aussi permis de valider nos résultats théoriques ainsi que d'évaluer la zone d'influence de la dépendance statistique induite. Pour démontrer l'efficacité de ces décompositions, nous avons été amenés à nous intéresser à deux types de problèmes : le débruitage et la déconvolution d'images. En ce qui concerne le débruitage, nous avons poursuivi deux buts principaux liés au cheminement de la thèse. Dans un premier temps, nous nous sommes attachés à montrer que la décomposition en arbre dual M-bandes apporte un gain significatif en terme de qualité, à la fois objective et subjective, par rapport à une décomposition en ondelettes classique, voire une décomposition dyadique en arbre dual. Dans un second temps, nous avons considéré le débruitage d'images multi-canaux pour lesquelles nous avons mis en place un estimateur statistique original reposant sur l'emploi du principe de Stein et permettant notamment de prendre en compte des voisinages quelconques (spatial, intercomposantes, inter-échelles, ...). Les problèmes de déconvolution d'images ont été appréhendés dans le cadre de méthodes variationnelles, en mettant en place un algorithme itératif, utilisant des outils récemment développés en analyse convexe. L'approche proposée permet de résoudre des problèmes inverses associés à des modèles probabilistes variés et elle est applicable à l'analyse M-bandes en arbre dual ainsi qu'à tout autre type de représentation à l'aide d'une trame.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00714292 |
Date | 13 December 2006 |
Creators | Chaux, Caroline |
Publisher | Université de Marne la Vallée |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds