Return to search

Caracterização de novos genes humanos envolvidos no processo de regulação da expressão de genes homeóticos / Characterization of novel human genes involved in the regulation of expression of homeotic genes

A identidade na segmentação do corpo de diversos organismos, durante o desenvolvimento, é devida, em grande parte, à ação das proteínas homeóticas. Em especial, dois grupos de proteínas, Trithorax (trxG) e Polycomb (PcG) têm um papel fundamental na manutenção, respectivamente, da ativação e da repressão da transcrição gênica, associando-se à cromatina. A importância das PcG nos estimulou a buscar a caracterização das proteínas humanas ortólogas ao \"Enhancer of Polycomb\" (Epc) de Drosophila, até então não descritas no genoma humano. Para tanto, buscamos: - obter a sequência completa e mapear o cDNA do novo gene humano homólogo ao \"Enhancer of Polycomb\" de Drosophila; - analisar sua expressão em tecidos fetais, adultos e tumorais e fazer estudos buscando sua caracterização funcional. Encontramos, mapeamos e obtivemos a seqüência completa de dois genes humanos, ortólogos de Epc1 (10p11-22) e de Epc2 (2q21-23) de camundongo, publicando estes dados em 2001 (Camargo et al., 2001). Ambos os genes são bastante conservados entre várias espécies, sendo que o cDNA de hEPC2 humano, por exemplo, é 94% idêntico ao Epc2 de camundongo e possui 96% de identidade ao nível de proteína, sugerindo que a função do gene deve ter sido mantida durante a evolução. No entanto, as seqüências protéicas de hEPC1 e hEPC2 humanos possuem apenas 68% de identidade entre si. Portanto, é provável que após a duplicação dos parálogos, estes tenham divergido funcionalmente. A expressão de ambos os genes foi avaliada utilizando \"dot-blots\" contendo 76 mRNAs de amostras de tecidos fetais, adultos e tumorais, mostrando-se fraca e ubíqua. Análises in silico sugeriram a existência de 4 isoformas de splicing para hEPC2, as quais foram validadas por RT-PCR ou \"Northern blots\". Uma das isoformas (de 2.7 Kpb) se mostrou mais abundante em todas as linhagens tumorais estudadas através de análises de \"Northern blot\", principalmente nas linhagens de linfoma de Burkitt\'s Raji e na linhagem de leucemia pró-mielocítica HL-60. Esta isoforma é gerada através de um sítio alternativo de poli-adenilação, que reduz sua porção 3\'UTR, retirando 4 dos 5 \"elementos ricos em adenilatos e uridilatos\" (AREs), envolvidos com a degradação de mRNAs lábeis que codificam proteínas regulatórias. Estes resultados se encontram em um manuscrito recentemente submetido à publicação (anexo à tese). Interação entre hEPC2 e SMADs e sua modulação por TGF-β. Durante a montagem da seqüência completa de hEPC2, verificamos que duas ESTs patenteadas mostravam alta identidade com o gene. Estas seqüências foram descritas como sendo parte de uma nova proteína de interação com as proteínas da família SMAD, envolvidas com transdução de sinais desencadeados por TGF-β. Esta citocina por sua vez, regula a proliferação, diferenciação e morte celular. Partimos para a avaliação da possível interação entre hEPC2 e as SMADs, em colaboração com o grupo do Dr. Aristidis Moustakas, do Ludwig Institute for Cancer Research de Uppsala, Suécia. Os resultados de co-imunoprecipitação sugeriram que as SMADs 2, 3, 4, 7 e 8 interagem com hEPC2, sendo que a interação entre as SMAD2, SMAD3, SMAD4 e hEPC2 nas células tratadas com TGF-β1, mostraram uma redução na co-imunoprecipitação. Este resultado sugere que TGF-β1 modula negativamente a interação entre essas proteínas. Da mesma maneira, foi observada uma redução na interação de hEPC2 com SMAD8 após o tratamento com BMP-7. Esse resultado é ainda mais destacado para as SMADs 2 e 3. Estes dados foram observados para ambas as construções de hEPC2, o que sugere fortemente a veracidade da interação entre estas proteínas. A localização celular de hEPC2, e também sua co-localização com SMAD2 foram investigadas através de imunofluorescência indireta e confirmaram a predição do programa PSORTII, de que hEPC2 se localiza no núcleo. No entanto, não foi possível observar a co-localização entre hEPC2 e SMAD2. É possível que hEPC2 não se ligue diretamente ao DNA, necessitando se associar como parceiro de um fator de transcrição. Esta foi uma das hipóteses para a atuação de hEPC2, como um co-fator que se associe com uma das SMADs e se ligue a um elemento específico de ligação a SMAD (SBE). Para investigar essa hipótese um ensaio de gene repórter foi feito utilizando uma construção de um repórter contendo 12 repetições da seqüência CAGA (seqüência específica de ligação das SMADs 2,3 e 4) fusionado com o gene da luciferase. No entanto, este ensaio não demonstrou que a transcrição de SMAD2 é dependente de hEPC2 e o experimento deverá ser repetido. Para confirmar a interação entre hEPC2 e as SMADs, será feito um experimento de \"pull-down\". Para tal o cDNA de hEPC2 foi clonado no vetor pET-32A de expressão indutível em bactérias. A proteína recombinante já foi produzida, tendo sido induzida e posteriormente purificada em condições desnaturantes. Apesar de dezenas de genes PcG terem sido caracterizados em Drosophila, poucos destes genes foram estudados em mamíferos. Portanto, a descrição do gene hEPC2 e seus transcritos alternativos, contribui para o conhecimento de PcG humanos, indicando a associação de maior expressão de uma de suas isoformas em linhagens celulares tumorais. Em relação à interação de hEPC2 com as SMADs, é interessante observar que nenhuma outra proteína foi descrita por possuir a particularidade de interagir com as SMADs de diferentes categorias. Talvez este seja um dado importante, que indique o papel singular de hEPC2 na sinalização de TGF-β1. / The identity of body segmentation in several organisms during development is, to a large extent, due to the action of the homeotic proteins. In particular, two groups of proteins, the Trithorax (trxG) and Polycomb (PcG), have a major role in maintenance of respectively, transcription activation and repression, when associated to the chromatin. The importance of PcGs has motivated us to pursue the isolation and characterization of two new human proteins that are orthologs of the \"Enhancer of Polycomb\" (Epc) of Drosophila. To achieve this goal we undertook the task of the cloning and mapping of complete cDNA sequence of the novel genes hEPC1 and hEPC2, analyzing its expression in fetal, adult and tumoral tissues and functionally characterizing the hEPC2 protein. In 2001, we published the mapping and cloning of the complete cDNA sequences of both genes, as being orthologs of the mouse Epc1 (10p11-22) and Epc2 (2q21-23), together with the strategy used to obtain the full-length cDNAs (Camargo et al., 2001). Both genes are shown to be highly conserved among several species. Thus, the human hEPC2 cDNA is 94% identical to the mouse Epc2 and displays 96% identity at the protein level, suggesting maintenance of its function during the evolution. However, the protein sequences of the human hEPC1 and hEPC2 display only 68% identity. Therefore, it is likely that they have undergone a functional divergence after their duplication. The expression of both genes was evaluated using \"dot-blots\" containing 76 mRNAs samples from fetal, adult and tumoral tissues and is shown to be weak and ubiquitous. \"In silico\" analysis suggested the existence of 4 hEPC2 splicing isoforms that were validated by RT-PCR and/or Northern-blots. One of the isoforms (of 2.7 Kbp) is shown to be more abundant in all of the tumoral cell lines evaluated using Northern-blot analysis, mainly in the Burkit\'s Raji lymphoma and in the promyelocytic leukemia HL-60. This isoform results from the use of an alternative polyadenylation site that reduces the 3\'UTR, abolishing 4 of 5 \"adenylates and urilates rich elements\" (AREs), involved in the degradation of labile mRNAs that codify to regulatory proteins. These results have been recently submitted to publication (manuscript attached to this thesis). Interaction between the hEPC2/SMADs and its modulation by TGF-β. During the assembly of the hEPC2 full-length cDNA sequence, we found two patented ESTs that tagged a portion of the gene. These sequences were described as partial sequences of a \"new SMAD interacting protein\", involved in signal transduction of TGF-β, a cytokine that regulates cell proliferation, differentiation and death. To evaluate this putative interaction between hEPC2 and the SMADs proteins, we begun a collaboration with the TGF-β signalling group of the Dr. Aristidis Moustakas, from the Uppsala Ludwig Institute for Cancer Research, Sweden. The results of co-imunoprecipitation assays suggested that SMADs 2, 3, 4, 7 e 8 interact with hEPC2. Moreover, the interaction among SMAD2, SMAD3, SMAD4 and hEPC2 in cells treated with TGF-β1 showed decreased co-imunoprecipitation. This result suggests that TGF-β1 negatively modulates the interaction of these proteins. Likewise, we observed a reduction in hEPC2 interaction with SMAD8 upon BMP-7 treatment. This effect was even more dramatic for SMADs 2 and 3. These data were observed for both hEPC2 plasmid constructs, which strongly suggest the veracity of these proteins interaction. The cell localization of the hEPC2 protein, as well as its co-localization with the SMAD2, were investigated through indirect immunofluorescence assay, confirming the predicted localization of hEPC2 in the cell nucleus using the PSORTII program. However, we were not able to confirm the co-localization of hEPC2 and SMAD2. It is possible that hEPC2 does not bind directly to the DNA, requiring an association with a partner such as a transcription factor. This raises the hypothesis of hEPC2 having a role as a co-factor associated to one of the SMADs and binding to a \"SMAD binding element\" (SBE). To investigate this hypothesis, gene reporter assays were undertaken using a reporter construct containing 12 CAGA sequence repetitions (specific binding sequence of the SMADs 2, 3 and 4) fused to the luciferase gene. However, this assay could not demonstrate that the transcription of the SMAD is dependent on hEPC2. This experiment must be repeated. To confirm the interaction of hEPC2 and SMADs, a pull-down assay will be performed. To this end, the coding region of hEPC2 was cloned into the pET-32A bacterial inducible expression vector. The recombinant protein was already produced, having been induced and purified under denaturing conditions. Despite the dozens of PcG genes that were described in Drosophila, only a few of these genes have been characterized in mammals. Therefore, the description of the hEPC2 and its alternative transcripts is a contribution to better knowledge of the human PcGs. Regarding the hEPC2 and SMADs interaction, it\'s it is noteworthy that this is the first protein described to interact with SMADs of distinct categories. This may be an important indication of a unique role for hEPC2 in the TGF-β1 signaling pathway.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-28112014-152127
Date03 September 2004
CreatorsDiana Noronha Nunes
ContributorsMari Cleide Sogayar, Roger Chammas, Maria Aparecida Nagai, Eduardo Moraes Rego Reis, Glaucia Mendes Souza
PublisherUniversidade de São Paulo, Ciências Biológicas (Bioquímica), USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0037 seconds