Anomale Diffusion ist nicht an stochastische Kräfte und eine große Zahl von Freiheitsgraden gebunden, sondern ist auch in chaotischen Systemen mit statischer Unordnung in den Bewegungsgleichungen zu beobachten. Einfache Modelle dieser niedrigdimensionalen Systeme, deren Dynamik durch iterierte Abbildungen vermittelt wird, können auf zufällige Irrfahrten in Zufallsumgebungen (random walks in random environments) abgebildet werden.
Sinai-Unordnung beschreibt eine spezielle Klasse dieser zufälligen Irrfahrten in Zufallsumgebungen, für die mit dem asymptotischen Verhalten der Entweichrate, der mittleren quadratischen Versetzung, der Zustandsdichte der Relaxationsraten bis hin zu der als Golosov-Phänomen bekannten dynamischen Lokalisierung analytische Resultate für verschiedene anomale Transporteigenschaften bekannt sind. Die vorliegende Arbeit untersucht numerisch eine rekurrente Erweiterung dieses auf Sprünge zu benachbarten Gitterpunkten beschränkten Modells auf die genannten Transporteigenschaften. Als wesentlicher Unterschied stellt sich dabei die Verletzung von detaillierter Balance im stationären Zustand heraus, der Auswirkungen auf das präasymptotische Verhalten der Transportkoeffizienten hat. Asymptotisch zeigt sich hingegen ein Verhalten wie bei der Sinai-Unordnung.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-200900701 |
Date | 26 April 2009 |
Creators | Fichtner, Andreas |
Contributors | TU Chemnitz, Fakultät für Naturwissenschaften, Prof. Dr. Günter Radons, Prof. Dr. Günter Radons, Prof. Dr. Karl Heinz Hoffmann, Prof. Dr. Igor Sokolov |
Publisher | Universitätsbibliothek Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | deu |
Detected Language | German |
Type | doc-type:doctoralThesis |
Format | application/pdf, text/plain, application/zip |
Page generated in 0.0019 seconds