Deutsche Zusammenfassung Die vorliegende Dissertation beschäftigt sich einerseits mit der Suche nach atmosphärischen Myonneutrinos und andererseits mit der Suche nach extraterrestrischen Neutrinopunktquellen in dem Datensatz, welcher im Jahre 1997 durch den AMANDA-Detektor aufgenommenen wurde. In dieser Arbeit wird zunächst die kosmische Strahlung eingeführt. Die Suche nach den Quellen dieser Strahlung wurde bisher insbesondere mit Hilfe der geladenen kosmischen Strahlung selber, sowie mit Hilfe von Cherenkovteleskopen für Gammastrahlen durchgeführt. Die mit diesen Techniken gewonnenen Erkenntnisse lassen bisher jedoch noch keine eindeutigen Schlüsse über die Quellen der geladenen kosmischen Strahlung zu. Dies motiviert den Versuch, mit Hilfe der Neutrinoastronomie ein neues Fenster zu den Quellen zu eröffnen. Es gibt theoretische Modelle für verschiedene potentielle Neutrinoquellen. Szenarien, in denen massive Teilchen zerfallen und die Zerfallsprodukte ihre kinetische Energie aus der freigewordenen Ruhemasse gewinnen, spielen in dieser Arbeit eine untergeordnete Rolle. Ausführlicher dargestellt werden die konventionellen Modelle, in denen geladene Teilchen mit Hilfe der sogenannten Fermibeschleunigung in astrophysikalischen Schockwellen und/oder Magnetfeldern beschleunigt werden. Hochenergetische Neutrinos entstehen nur bei Quellen, welche Hadronen beschleunigen. Insbesondere die Klasse der aktiven galaktischen Kerne (AGNs) sind hierbei interessant. Die vor einigen Jahren entwickelten vereinheitlichten AGN-Schemata sind ein wichtiger Schritt auf dem Weg, diese Objekte zu verstehen. Andere potentielle Quellen sind Supernovae und ihre überreste, Mikroquasare, sowie die Quellen hochintensiver Gammastrahlenausbrüche (GRBs). Hoch spekulativ sind Quellen, welche im elektromagnetischen Spektrum unsichtbar sind, oder auch bisher vollkommen unerwartete Quellen. Unabhängig von der genauen Natur möglicher Neutrinoquellen müssen für die Beschreibung der von ihnen ausgesendeten Neutrinoflüsse Oszillationseffekte zwischen den verschiedenen Neutrinofamilien berücksichtigt werden. Der Nachweis der hochenergetischen Neutrinos soll mit dem AMANDA-Detektor oder ähnlichen Teleskopen erfolgen. Das derzeitige AMANDA-Teleskop AMANDA-II wurde in den Jahren 1995 bis 2000 aufgebaut. Es basiert auf dem Nachweis von neutrinoinduzierten Myonen mit Hilfe des Cherenkoveffektes. Das Cherenkovlicht wird hierbei von, in einem Gitter angeordneten, großen Sekundärelektronenvervielfachern registriert. Die gewonnene Zeitinformation erlaubt eine Richtungsrekonstruktion. Das Charakteristikum für ein Neutrinoereignis ist ein aufwärts laufendes Myon, da das Neutrino das einzige bekannte Teilchen ist, welches die Erde durchqueren und ein aufwärts laufendes Myon erzeugen kann. Die vorliegende Arbeit untersucht Daten, die mit Hilfe des AMANDA-B10-Detektors im Jahre 1997 genommen wurden. Die Daten bestehen aus etwa $10^9$ atmosphärischen Myon- und etwa 5000 atmosphärischen Neutrinoereignissen. Um die experimentell gewonnenen Daten analysieren zu können, wird der Vergleich zu simulierten Daten benötigt. Im Rahmen dieser Arbeit wurden Flüsse atmosphärischer Myonen mit den Programmen basiev und Corsika, Flüsse neutrinoinduzierter Myonen mit nusim und nu2mu generiert. Während eine hohe Zahl von neutrinoinduzierten Myonen simuliert werden konnte, blieb die Zahl der simulierten atmosphärischen Myonen weit hinter der Zahl der experimentell gemessenen zurück. Die Propagation der simulierten Myonen sowie die Detektorsimulation erfolgte mit den Programmen mudedx bzw. amasim. Die Zeit-, Orts- und Amplitudeninformationen der gemessenen -- wie auch der simulierten -- Daten wurden anschließend kalibriert. Das erste Ziel der Analyse war die Extrahierung eines Satzes atmosphärischer Neutrinos und ein Verständnis der absoluten Sensitivität des Detektors. Die hierfür notwendige Prozessierung der Daten erfolgte in mehreren Schritten. Dabei wechselten sich immer exaktere (aber auch immer langsamere) Richtungsrekonstruktionen mit immer strengeren Qualitäts- und Winkelschnitten zur Datenreduktion ab. Die Rekonstruktionen bestanden sowohl aus schnellen analytischen Richtungsapproximationen, wie auch aus solchen, die auf langsamen Minimierung von Likelihoodfunktionen basierten. Die Schnitte wurden auf topologische Grössen, wie auch auf Parameter, welche aus der Rekonstruktion gewonnen wurden, angewandt. Die Schnitte waren notwendig, um Neutrinoereignisse aus dem weit zahlreicheren Untergrund atmosphärischer Myonenereignisse herauszufiltern. Es wurden zwei stark reduzierte Datensätze ("BG-10" mit 223 Ereignissen und "BG-100" mit 369 Ereignissen) aus den gemessenen Daten extrahiert. Es konnte gezeigt werden, dass hiervon ca. 15 bzw. 100 Ereignisse durch atmosphärische Myonen bedingt waren. Die Ergebnisse stimmen sehr gut mit der Erwartung für atmosphärische Neutrinos überein, wobei die Erwartung eine Unsicherheit von bis zu 63% aufweist. Mit dem BG-10 Datensatz war somit das erste Ziel der Analyse erfüllt. Der BG-100 Datensatz sollte dem zweiten Ziel dieser Arbeit dienen: der Suche nach extraterrestrischen Neutrinoquellen. Für dieses zweite Ziel musste zunächst mit der effektiven Fläche} ein Maß für die Sensitivität des Detektors bezüglich extraterrestrischer Neutrinos eingeführt werden. Anschließend wurde die Güte der Richtungsrekonstruktion bestimmt. Hiermit konnte die optimale Grösse der zu benutzenden Suchfenster festgelegt werden. Für diese Suchfenster wurde dann die Effizienz der Rekonstruktion bestimmt. Die Effizienz ist ein Maß für den Anteil der Neutrinoereignisse, für den die Rekonstruktion korrekt bestimmt, aus welchem Suchfenster sie stammen. Nach diesen vorbereitenden Untersuchungen konnte die Quellsuche beginnen. Für diese Suche waren nun sowohl atmosphärische Myonereignisse, als auch Ereignisse, die durch atmosphärische Neutrinos hervorgerufen wurden, Untergrund. Für die Suche wurden drei verschiedene Strategien angewendet. Zunächst wurde ein Netz aus 374 aneinander angrenzenden Suchfenstern konstruiert. Basierend auf der erwarteten Anzahl von Untergrundereignissen für jedes Suchfenster wurden Wahrscheinlichkeiten berechnet, dass die Ereignisse ausschließlich Untergrundereignisse sind. Durch die große Zahl an Suchfenstern gab es einige Fenster, bei denen diese Wahrscheinlichkeit recht gering war. Insgesamt jedoch gab es keinen signifikanten Hinweis darauf, dass die Messung nicht auschließlich durch Untergrund erklärt werden kann. Die zweite Strategie bestand in dem Versuch, mit Hilfe einer Clusteranalyse Punktquellen zu finden. Auch hier wurden keine Hinweise auf Punktquellen gefunden. Schließlich wurde in Richtung von 62 vorselektierten potentiellen Quellen nach Ereignisüberschüssen gesucht -- ebenfalls ohne ein positives Ergebnis. Daraufhin wurden obere Flussgrenzen abgeleitet. Diese Grenzen wurden sowohl richtungsunabhängig als auch für die zuvor selektierten potentiellen Quellen berechnet. In beiden Fällen wurde dabei für das Quellspektrum ein spektraler Index gamma = -2 angenommen. Für Neutrinoenergien E > 10 GeV und Deklinationen > 33 Grad wurden integral folgende globale, obere Flussgrenzen berechnet: Myonfluss: 1.41 * 10^-14 cm^-2 s-1 und Neutrinofluss: 1.65 * 10^-7 cm^-2 s^-1 . Nach der "Eichung" am Fluss atmosphärischer Neutrinos konnte die systematische Unsicherheit auf diese Grenzen zu 46% (systematisch) plus 7% (statistisch) abgeschätzt werden. Für die 62 ausgewählten Quellen wurden individuelle Flussgrenzen berechnet. Diese waren im Durchschnitt etwa einen Faktor drei besser als die integralen Grenzen für den entsprechenden Deklinationsbereich. Bei 48 potentiellen Quellen waren dies sowohl die ersten Grenzen auf ihren Neutrino- als auch die ersten Grenzen auf ihren neutrinoinduzierten Myonenfluss. Für eine weitere Quelle konnte erstmals eine Grenzen auf den Neutrinofluss abgeleitet werden. Bei den 14 restlichen Quellen konnten in fünf Fällen beide bisher publizierten Grenzen verbessert werden, in zwei weiteren zumindest die Grenze auf den Neutrinofluss. Im Anhang werden Daten bereitgestellt, mit denen die errechneten Grenzen auch in Grenzen für andere spektrale Indizes umgerechnet oder auch Grenzen für weitere Quellen abgeleitet werden können. / Abstract The young field of high energy neutrino astronomy can be motivated by the search for the origin of the charged cosmic rays. Large astrophysical objects like AGNs or supernova remnants are candidates to accelerate hadrons which then can interact to eventually produce high energy neutrinos. Neutrino-induced muons can be detected via their emission of Cherenkov light in large neutrino telescopes like AMANDA. More than 10^9 atmospheric muon events and approximately 5000 atmospheric neutrino events were registered by AMANDA-B10 in 1997. Out of these, 223 atmospheric neutrino candidate events have been extracted. This data set contains approximately 15 background events. It allows to confirm the expected sensitivity of the detector towards neutrino events. A second set containing 369 events (approximately 270 atmospheric neutrino events and 100 atmospheric muon events) was used to search for extraterrestrial neutrino point sources. Neither a binned search, nor a cluster search, nor a search for preselected sources gave indications for the existence of a strong neutrino point source. Based on this result, flux limits were derived. Assuming E^-2 neutrino spectra, typical flux limits for selected sources of the order of 10^-14 cm^-2 s^-1 for muon fluxes and 10^-7 cm^-2 s^-1 for neutrino fluxes have been obtained.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/15395 |
Date | 02 May 2002 |
Creators | Curland, Alexander Biron von |
Contributors | Söding, Paul, Barwick, Steven, Lohse, Thomas |
Publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | German |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0034 seconds