Submitted by Erika Demachki (erikademachki@gmail.com) on 2014-09-23T21:19:16Z
No. of bitstreams: 2
Peixoto, Franciele Parreira-Dissertação-2013.pdf: 995120 bytes, checksum: 365969ffce47a58af2a011eb0370ed04 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-09-23T21:58:54Z (GMT) No. of bitstreams: 2
Peixoto, Franciele Parreira-Dissertação-2013.pdf: 995120 bytes, checksum: 365969ffce47a58af2a011eb0370ed04 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-23T21:58:54Z (GMT). No. of bitstreams: 2
Peixoto, Franciele Parreira-Dissertação-2013.pdf: 995120 bytes, checksum: 365969ffce47a58af2a011eb0370ed04 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2013-03-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Aim: To investigate global patterns of phylobetadiversity (PBD) in bats, with the
purpose to better understand the mechanisms underlying current biodiversity patterns.
We also aimed to use a metric that allows partitioning PBD into two components to
distinguish the relative roles of local (e.g. lineage filtering) and regional processes (e.g.
speciation) in shaping broad-scale patterns of PBD. Furthermore, we analyzed the
distance-decay relationship of phylogenetic beta diversity to provide more information
about factors that act in the PBD patterns.
Location: global, delimited by biogeographic regions.
Methods: Using the global distribution of bats and a supertree available for most
species, we calculated PBD using the complement of phylosor index. We used a null
model to test if two assemblages were more or less phylogenetically dissimilar than
expected by chance. In addition, we decoupled PBD into turnover and nestednessresultant
components, providing information about two factors that produce differences
in assemblage phylogenetic composition. We also performed a Mantel analysis to
analyze the distance-decay patterns of PBD and its two components.
Results: The most striking difference in PBD was found between the Old and New
World “phylogenetic composition”. We found the lowest values of PBD between
adjacent regions (i.e., Neotropical/Neartic; Indo-Malay/Paleartic), revealing a strong
geographical structure in PBD. These values were even lower when the turnover
component was analyzed, demonstrating the differences in the role of regional processes
in shaping regional diversity. On the other hand, we found out that for some adjacent
regions (e.g., Afrotropical/Paleartic), the observed PBD was higher than expected by
chance and comparatively different from expected by the distance decay relationship.
This value remained high, even when we analyzed just the PBD turnover component.
This demonstrates that although these regions are relatively close in space, there are
other factors driving phylogenetic differences between them (e.g. an environmental
barrier).
Main conclusions: Our analyses revealed differences in the expected patterns of bat
PBD among regions, suggesting that at broad scales, besides the effects of distance and
geographic barriers, we also have to consider the importance of environmental gradients
when studying the phylogenetic origin of bat assemblages. / A abordagem mais comum no uso de PD (diversidade filogenética) para conservação é
selecionar locais com maior diversidade evolutiva. Essa estratégia parte do pressuposto
de que locais com maior quantidade de PD indicam maior potencial para respostas
evolutivas a mudanças ambientais futuras. No entanto, há um crescente debate sobre se
as prioridades de conservação deveriam também ser voltadas para locais com baixo
valor de PD, que podem representar centros de diversificação de espécies ou “berçários
de diversidade”. Alguns trabalhos têm testado se os hotspots globais de biodiversidade,
baseados em riqueza, também representam locais de desproporcional concentração de
história evolutiva. Nós testamos aqui se os hotspots contêm mais, menos ou igual
diversidade filogenética (PD) que o esperado por uma amostragem ao acaso de espécies
em qualquer posição na filogenia, para a ordem Chiroptera. Buscamos responder qual a
real contribuição de cada hotspot para a conservação de padrões e processos
relacionados à diversidade filogenética. Nós utilizamos uma supertree disponível para a
maioria das espécies da ordem, e dados de distribuição das espécies. Nós calculamos o
PD para cada hotspot separadamente e utilizamos um modelo nulo para obter os valores
esperados dado a riqueza. De 34 hotspots, apenas um apresentou maior PD do que o
esperado, treze apresentaram valores menores e o restante valores iguais ao esperado.
Nós demonstramos que a relação entre PD e riqueza varia entre regiões biogeográficas,
de modo que não há como fazer generalizações acerca da contribuição dos hotspots para
a conservação de diversidade evolutiva. De modo geral nossos resultados demonstram
que devido ao fato da história evolutiva variar regionalmente, também devem ser
estabelecidas as prioridades de conservação nessa escala.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tede/3151 |
Date | 18 March 2013 |
Creators | Peixoto, Franciele Parreira |
Contributors | Brito, Daniel, Diniz Filho, José Alexandre Felizola, Terribile, Levi Carina, Duarte, Leandro, Brito, Daniel, Diniz Filho, José Alexandre Felizola |
Publisher | Universidade Federal de Goiás, Programa de Pós-graduação em Ecologia e Evolução (ICB), UFG, Brasil, Instituto de Ciências Biológicas - ICB (RG) |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG |
Rights | http://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess |
Relation | -5361682850774351271, 600, 600, 600, 600, -3872772117827373404, -1634559385931244697, 2075167498588264571, Brooks T.M., Mittermeier R. a, Da Fonseca G. a B., Gerlach J., Hoffmann M., Lamoreux J.F., Mittermeier C.G., Pilgrim J.D., & Rodrigues a S.L. (2006) Global biodiversity conservation priorities. Science (New York, N.Y.), 313, 58–61. Carvalho S.B., Brito J.C., Crespo E.J., & Possingham H.P. (2011) Incorporating evolutionary processes into conservation planning using species distribution data: a case study with the western Mediterranean herpetofauna. Diversity and Distributions, 17, 408–421. Cowling R.M. & Pressey R.L. (2001) Rapid plant diversification : Planning for an. PNAS, 98, 5452–5457. Cox C.B. (2000) Plate Tectonics , Seaways and Climate in the Historical Biogeography of Mammals. North, 95, 509–516. Davies T.J. & Buckley L.B. (2011) Phylogenetic diversity as a window into the evolutionary and biogeographic histories of present-day richness gradients for mammals. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 366, 2414–25. Davies T.J., Fritz S.A., Grenyer R., Orme C.D.L., Bielby J., Bininda-emonds O.R.P., Cardillo M., Jones K.E., Gittleman J.L., Mace G.M., & Purvis A. (2008) Phylogenetic trees and the future of mammalian biodiversity. PNAS, 105, 11556– 11563. Davis E.B., Koo M.S., Conroy C., Patton J.L., & Moritz C. (2008) The California Hotspots Project: identifying regions of rapid diversification of mammals. Molecular ecology, 17, 120–38. Erwin T.L. (1991) An Evolutionary Basis for Conservation Strategies. Science, 253, 750–752. Faith D.P. (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1–10. Fjeldsa J. (1994) Geographical patterns for relict and young species of birds in Africa and South America and implications for conservation priorities. Biodiversity and Conservation, 3, 207–226. Forest F., Grenyer R., Rouget M., Davies T.J., Cowling R.M., Faith D.P., Balmford A., Manning J.C., Procheş S., Van der Bank M., Reeves G., Hedderson T. a J., & Savolainen V. (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 445, 757–60. Hawkins B. a., McCain C.M., Davies T.J., Buckley L.B., Anacker B.L., Cornell H. V., Damschen E.I., Grytnes J.-A., Harrison S., Holt R.D., Kraft N.J.B., & Stephens P.R. (2012) Different evolutionary histories underlie congruent species richness gradients of birds and mammals. Journal of Biogeography, 39, 825–841. IUCN (2011) Available at: http://www.iucnredlist.org. Jones K.E., Bininda-Emonds O.R.P., & Gittleman J.L. (2005) Bats, clocks, and rocks: diversification patterns in Chiroptera. Evolution, 59, 2243–2255. Jones K.E., Purvis A., MacLarnon A., Bininda-Emonds O.R.P., & Simmons N.B. (2002) A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological reviews of the Cambridge Philosophical Society, 77, 223–59. Kembel S.W., Cowan P.D., Helmus M.R., Cornwell W.K., Morlon H., Ackerly D.D., Blomberg S.P., & Webb C.O. (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics (Oxford, England), 26, 1463–4. Kraft N.J.B., Baldwin B.G., & Ackerly D.D. (2010) Range size, taxon age and hotspots of neoendemism in the California flora. Diversity and Distributions, 16, 403–413. Lessard J.-P., Borregaard M.K., Fordyce J. a, Rahbek C., Weiser M.D., Dunn R.R., & Sanders N.J. (2012) Strong influence of regional species pools on continent-wide structuring of local communities. Proceedings. Biological sciences / The Royal Society, 279, 266–74. Mace G.M., Gittleman J.L., & Purvis A. (2003) Preserving the Tree of Life. Science, 300, 1707 – 1709. Mittermeier R.A., Gil P.R., Hoffman M., Pilgrim J., Brooks T., Mittermeier C.G., Lamoreux J., & Da Fonseca G.A.B. (2005) Hotspots revisited: earth’s biologically richest and most threatened terrestrial ecoregions. Conservation International, Washington, D.C. Myers N. (2003) Biodiversity Hotspots Revisited. BioScience, 53, 916–917. Myers N., Mittermeier R. a, Mittermeier C.G., Da Fonseca G. a, & Kent J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853–8. Nee S. & May R.M. (1997) Extinction and the Loss of Evolutionary History. Science, 278, 692–694. Pimm S.L. & Raven P. (2000) Extinction by numbers. Nature, 403, 843–845. Polasky S., Csuti B., Vossler C.A., & Meyers S.M. (2001) A comparison of taxonomic distinctness versus richness as criteria for setting conservation priorities for North American birds. Biological Conservation, 97, 99–105. Purvis a. (2000) Nonrandom Extinction and the Loss of Evolutionary History. Science, 288, 328–330. Rodrigues A.S.L. & Gaston K.J. (2002) Maximising phylogenetic diversity in the selection of networks of conservation areas. Biological Conservation, 105, 103– 111. Rolland J., Cadotte M.W., Davies J., Devictor V., Lavergne S., Mouquet N., Pavoine S., Rodrigues A., Thuiller W., Turcati L., Winter M., Zupan L., Jabot F., & Morlon H. (2011) Using phylogenies in conservation: new perspectives. Biology letters, 8, 692–694. Russell G.J., Brooks T.M., Kinney M.M.M.C., & Anderson C.G. (1998) Present and Future Taxonomic Selectivity in Bird and Mammal Extinctions. Conservation biology, 12, 1365–1376. Safi K., Cianciaruso M. V, Loyola R.D., Brito D., Armour-Marshall K., & Diniz-Filho J.A.F. (2011) Understanding global patterns of mammalian functional and phylogenetic diversity. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 366, 2536–44. Sechrest W., Brooks T.M., Da Fonseca G. a B., Konstant W.R., Mittermeier R. a, Purvis A., Rylands A.B., & Gittleman J.L. (2002) Hotspots and the conservation of evolutionary history. Proceedings of the National Academy of Sciences of the United States of America, 99, 2067–71. Simmons N.B. (2006) Order Chiroptera. Mammal species of the world: a taxonomic and geographic reference (ed. by D.E. Wilson and D.M. Reeder), Smithsonian Institution Press, Washington. Spathelf M. & Waite T. a. (2007) Will hotspots conserve extra primate and carnivore evolutionary history? Diversity and Distributions, 13, 746–751. Vane-Wright R.I., Humphries C.J., & Williams P.H. (1991) What to Protect ? Systematics and the Agony of Choice. Biological Conservation, 55, 235–254. Weir J.T. & Schluter D. (2007) The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science (New York, N.Y.), 315, 1574–6. Whittaker R.J., Araújo M.B., Jepson P., Ladle R.J., Watson J.E.M., & Willis K.J. (2005) Conservation Biogeography : assessment and prospect. Diversity and Distributions, 11, 3–23. Wiens J.J., Graham C.H., Moen D.S., Smith S. a, & Reeder T.W. (2006) Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. The American naturalist, 168, 579–96. |
Page generated in 0.0033 seconds