• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using Bird Distributions to Assess Extinction Risk and Identify Conservation Priorities in Biodiversity Hotspots

Ocampo-Penuela, Natalia January 2016 (has links)
<p>Habitat loss, fragmentation, and degradation threaten the World’s ecosystems and species. These, and other threats, will likely be exacerbated by climate change. Due to a limited budget for conservation, we are forced to prioritize a few areas over others. These places are selected based on their uniqueness and vulnerability. One of the most famous examples is the biodiversity hotspots: areas where large quantities of endemic species meet alarming rates of habitat loss. Most of these places are in the tropics, where species have smaller ranges, diversity is higher, and ecosystems are most threatened.</p><p> Species distributions are useful to understand ecological theory and evaluate extinction risk. Small-ranged species, or those endemic to one place, are more vulnerable to extinction than widely distributed species. However, current range maps often overestimate the distribution of species, including areas that are not within the suitable elevation or habitat for a species. Consequently, assessment of extinction risk using these maps could underestimate vulnerability.</p><p>In order to be effective in our quest to conserve the World’s most important places we must: 1) Translate global and national priorities into practical local actions, 2) Find synergies between biodiversity conservation and human welfare, 3) Evaluate the different dimensions of threats, in order to design effective conservation measures and prepare for future threats, and 4) Improve the methods used to evaluate species’ extinction risk and prioritize areas for conservation. The purpose of this dissertation is to address these points in Colombia and other global biodiversity hotspots.</p><p>In Chapter 2, I identified the global, strategic conservation priorities and then downscaled to practical local actions within the selected priorities in Colombia. I used existing range maps of 171 bird species to identify priority conservation areas that would protect the greatest number of species at risk in Colombia (endemic and small-ranged species). The Western Andes had the highest concentrations of such species—100 in total—but the lowest densities of national parks. I then adjusted the priorities for this region by refining these species ranges by selecting only areas of suitable elevation and remaining habitat. The estimated ranges of these species shrank by 18–100% after accounting for habitat and suitable elevation. Setting conservation priorities on the basis of currently available range maps excluded priority areas in the Western Andes and, by extension, likely elsewhere and for other taxa. By incorporating detailed maps of remaining natural habitats, I made practical recommendations for conservation actions. One recommendation was to restore forest connections to a patch of cloud forest about to become isolated from the main Andes.</p><p>For Chapter 3, I identified areas where bird conservation met ecosystem service protection in the Central Andes of Colombia. Inspired by the November 11th (2011) landslide event near Manizales, and the current poor results of Colombia’s Article 111 of Law 99 of 1993 as a conservation measure in this country, I set out to prioritize conservation and restoration areas where landslide prevention would complement bird conservation in the Central Andes. This area is one of the most biodiverse places on Earth, but also one of the most threatened. Using the case of the Rio Blanco Reserve, near Manizales, I identified areas for conservation where endemic and small-range bird diversity was high, and where landslide risk was also high. I further prioritized restoration areas by overlapping these conservation priorities with a forest cover map. Restoring forests in bare areas of high landslide risk and important bird diversity yields benefits for both biodiversity and people. I developed a simple landslide susceptibility model using slope, forest cover, aspect, and stream proximity. Using publicly available bird range maps, refined by elevation, I mapped concentrations of endemic and small-range bird species. I identified 1.54 km2 of potential restoration areas in the Rio Blanco Reserve, and 886 km2 in the Central Andes region. By prioritizing these areas, I facilitate the application of Article 111 which requires local and regional governments to invest in land purchases for the conservation of watersheds.</p><p>Chapter 4 dealt with elevational ranges of montane birds and the impact of lowland deforestation on their ranges in the Western Andes of Colombia, an important biodiversity hotspot. Using point counts and mist-nets, I surveyed six altitudinal transects spanning 2200 to 2800m. Three transects were forested from 2200 to 2800m, and three were partially deforested with forest cover only above 2400m. I compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analyzing the effect of deforestation on 134 species, I tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species’ elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species’ elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations.</p><p> In Chapter 5, I refine the ranges of 726 species from six biodiversity hotspots by suitable elevation and habitat. This set of 172 bird species for the Atlantic Forest, 138 for Central America, 100 for the Western Andes of Colombia, 57 for Madagascar, 102 for Sumatra, and 157 for Southeast Asia met the criteria for range size, endemism, threat, and forest use. Of these 586 species, the Red List deems 108 to be threatened: 15 critically endangered, 29 endangered, and 64 vulnerable. When ranges are refined by elevational limits and remaining forest cover, 10 of those critically endangered species have ranges < 100km2, but then so do 2 endangered species, seven vulnerable, and eight non-threatened ones. Similarly, 4 critically endangered species, 20 endangered, and 12 vulnerable species have refined ranges < 5000km2, but so do 66 non-threatened species. A striking 89% of these species I have classified in higher threat categories have <50% of their refined ranges inside protected areas. I find that for 43% of the species I assessed, refined range sizes fall within thresholds that typically have higher threat categories than their current assignments. I recommend these species for closer inspection by those who assess risk. These assessments are not only important on a species-by-species basis, but by combining distributions of threatened species, I create maps of conservation priorities. They differ significantly from those created from unrefined ranges.</p> / Dissertation
2

Porovnání modelových chráněných území - hodnocení kvality a konektivity habitatů / Comparison of model protected areas - evaluation of the quality and connectivity of habitats

Hrdina, Aleš January 2014 (has links)
This diploma thesis deals with the biodiversity hotspots - high biodiversity areas with a large proportion of endemic species, which also has already lost a significant part of its natural habitat. The historical development of the biodiversity hotspots concept is described, all 34 hotspots is characterized, species diversity and endemism of plants and animals, potential natural vegetation is analysed, as well as threats, anthropogenic impact and conservation considering protected areas, categories I-IV areas of the IUCN protected areas management system, and national parks. A complete digital vector database of national parks was created. Qualitative importance of each hotspot is evaluated using the Myers method and areas of the world with the highest conservation priority are identified. Keywords: biodiversity hotspots, habitat quality, protected areas, national parks
3

Planktonic biodiversity hotspots in the open ocean : detection, drivers and implications at the global scale / Hotspots de biodiversité du plancton dans l'océan ouvert : détection, drivers et implications à l'échelle globale

Soccodato, Alice 18 December 2014 (has links)
Les patterns de biodiversité et les mécanismes qui les maintiennent ont toujours intéressé les biologistes et ont été abordés en considérant des facteurs géologiques, évolutifs et écologiques. Les processus écologiques qui déterminent la co-occurrence des espèces diffèrent en fonction de l'environnement physique de l'écosystème. De nombreuses théories ont proposé des relations entre les tendances observées dans la diversité des espèces et les caractéristiques physiques de l’environnement à grande échelle. Dans les milieux terrestres et aquatiques, l’impact de la température sur la distribution de la biodiversité compte parmi les facteurs les plus influentes et étudiés. Toutefois, de nombreux taxa marins représentent des exceptions à cette influence primaire de la température, alors qu'une fraction dominante des espèces marines est planctonique ou à larves dispersibles. La dispersion par le transport physique a certainement un impact majeur sur les patterns d'abondance des espèces dans l’environnement marin. Certains courants océaniques peuvent en effet contraindre la distribution des stades planctoniques de certaines espèces, même lorsque les paramètres démographiques et physiologiques des espèces sont insensibles aux propriétés de l'eau. Les mécanismes de transport peuvent donc influencer la distribution de la diversité à toutes les échelles, de l’individu aux populations jusqu’aux espèces. Contrairement aux écosystèmes terrestres, les écosystèmes en milieu marin sont sujets à une variabilité dont les échelles spatiales et temporelles sont dictées par les processus du transport physique turbulent. Cet aspect complique l’obtention d’informations synoptiques sur la distribution des espèces marines au niveau global et à haute résolution, alors que cette vision globale est essentielle pour pouvoir comprendre les patterns de biodiversité et les mécanismes impliqués dans leurs variations. En outre, les hotspots de biodiversité sont d’importance primaire pour les efforts de conservation. Les objectifs de cet étude sont les suivants: identifier les hotspots de biodiversité pélagique des producteurs primaires à l'échelle globale et à haute résolution; déterminer les processus physiques de l'océan qui contrôlent la dynamique spatio-temporelle des hotspots, en se focalisant sur les mécanismes de transport, de dispersion, advection et mélange; étudier l'influence de ces mécanismes de structuration de la biodiversité sur les niveaux trophiques supérieurs.Pour obtenir ces résultats, les informations sur les parcelles d’eaux aux caractéristiques biophysiques cohérentes (‘niches fluido-dynamiques’) obtenues par satellite sont utilisées pour identifier les hotspots de biodiversité microbienne comme région de forte variabilité spatiale de ces niches. Ces hotspots et le rôle du transport dans leur structuration sont étudiés par l'analyse des modèles écologiques et biophysiques de circulation globale (Modèle ECCO2-Darwin) et par l’examen de données moléculaires et morphologiques sur la structure de la communauté in-situ collectées par l'expédition Tara Oceans et Atlantic Meridional Transect. Les possibles effets ‘bottom-up’ de la diversité des producteurs primaires sur les niveaux supérieurs de la chaine trophique sont évalués par comparaison avec des modèles globaux qui intègrent des bases de données in situ. / Patterns of biodiversity and the mechanisms that maintain them have always interested biologists and have been addressed considering geological, evolutionary and ecological factors. Ecological processes that determine the co-occurrence of species differ according to the physical environment of the ecosystem. Many theories have proposed relationships between patterns in species diversity and large-scale physical features. In terrestrial and aquatic environments, the impact of temperature on the distribution of biodiversity is among the most influent and studied factors. However, many marine taxa are exceptions in the primary influence of temperature, since a large fraction of marine species is planktonic or with dispersible larvae. In the marine environment, dispersal through physical transport has a major impact on patterns of species abundance. Some ocean currents can indeed determine the distribution of planktonic stages of some species, even when demographic and physiological features of the species are unaffected by water properties. Transport mechanisms may therefore influence the distribution of diversity at all scales, from the individual to populations and species. Contrarily to the terrestrial environment, marine ecosystems are characterized by a variability that has spatial and temporal scales defined by specific biophysical processes of turbulent transport. This aspect makes it challenging to provide synoptic information on the distribution of marine species at the global level and at high resolution, features that are essential to understand patterns of biodiversity and the mechanisms involved in their changes. Moreover, hotspots of biodiversity are of primary concerns for conservation efforts. The objectives of this study are therefore: to identify biodiversity hotspots of pelagic primary producers on a global scale and at high resolution; to determine the physical ocean processes that control the spatial and temporal dynamics of such hotspots, focusing on transport-driven mechanisms like dispersion, advection and mixing; study the role of these mechanisms in the structuring of biodiversity at higher trophic levels.To obtain these results, information on water masses with coherent biophysical characteristics ('fluid-dynamical niches') obtained by remote sensing are used to identify hotspots of microbial biodiversity as regions of strong spatial patchiness. These hotspots and the role of transport in shaping their structure are studied by analysing ecological and biophysical global circulation models (Model-ECCO2 Darwin), together with molecular and morphological data on the structure of the community, obtained using in-situ data collected during the Tara-Oceans expedition and Atlantic Meridional Transect. The possible bottom-up effects of the diversity of primary producers on the upper levels of the food chain are evaluated by comparing them with global models integrated with data collected in situ.The ecological models coupled with ocean circulation, identified as biodiversity hotspots of primary producers the most dynamic areas of the global ocean characterized by increased turbulence, mixing and the presence of vortices. These oceanographic features can improve local productivity by transporting nutrients in the photic zone and increase biodiversity by the mixing of species typical of different water masses. In addition, maps of microbial biodiversity suggest a bottom up propagation of biodiversity across the ecosystem, hotspots for primary producers being positively correlated with regions where highest number of top predator species are observed.
4

Déficit de connaissances de la biodiversité et biologie de la conservation : le cas de l’herpétofaune d’Algérie / Biodiversity shortfalls and biodiversity conservation : the case of Algerian herpetofauna

Beddek, Menad 30 November 2017 (has links)
L’Algérie est un cas d’école en matière d’ignorance en biodiversité. A ce jour, on ne dispose d'aucun inventaire complet pour aucun taxon ni aucun atlas à l’échelle du pays ! Pourtant, l’Algérie est d’une grande importance pour la biodiversité mondiale. La façade littorale de l’Algérie fait partie du hostpot de biodiversité mondial qui est le pourtour méditerranéen et compte plusieurs points rouges de biodiversité régionaux. Par ailleurs, la partie saharienne contient une diversité d’organismes endémiques adaptés aux fortes conditions de sécheresse. Les autorités algériennes déploient un projet ambitieux pour la conservation en fixant 50 % de la surface du pays comme objectif pour les aires protégées ! Mais, l’emplacement de ces aires protégées et leur gestion n’obéit pas à des critères basés sur une bonne connaissance de la diversité, mais sont plutôt panifiés à dire d’expert. L’objectif général de cette thèse c’est l’étude de la distribution de l’ignorance en biodiversité en Algérie en se concentrant sur les « Linnean, Wallacean et Darwinian Shortfalls » et de contribuer à les réduire. J’ai consacré un chapitre qui a pour but de réduire le Linnean Shortfall en proposant 1) une première checklist des reptiles et amphibiens d’Algérie qui est le fruit d’un examen précis des publications scientifiques sur ces taxons en Afrique du Nord. 2) une première pré-évaluation des statuts de conservations des reptiles et amphibiens d’Algérie pour la production de la première liste rouge nationale. La deuxième partie de ce manuscrit traite la question de l’ignorance de la distribution géographique des espèces. Le but de cette partie est de cartographier l’ignorance qui est la différence entre la diversité la richesse spécifique attendue et la richesse spécifique observée. La richesse spécifique attendue a été modélisée avec deux approches : 1 l’utilisation des modèles de niches avec la méthode de maximum d’entropie (MaxEnt) pour prédire les habitats favorables pour chaque espèce puis additionner les différentes couches binaires de présence des espèces pour calculer la richesse spécifique. 2) l’addition des couches des aires d’occurrences des espèces construite par la méthode du minimum convex polygon pour produire la carte de distribution de la richesse spécifique. Les deux approches ont montré la même tendance à l’échelle nationale, c’est-à-dire la concentration des zones les plus riches sur le long de l’Atlas Saharien et des hauts plateaux qui sont la zone de transition entre le Sahara et la partie méditerranéenne de l’Algérie. L’opposition de la partie saharienne globalement pauvre en espèce et la moitié nord plus riche. En fin, les massifs sahariens du Hoggar et Tassili forment une zone très distincte avec une richesse nettement supérieure par rapport au reste du Sahara. Pour ce qui est des lacunes, dans la Partie nord, la Kabylie, le parc national d’El Kala et la région d’Oran sont assez bien prospectées. Dans le Sahara, seuls quelques points sont assez bien prospectés comme Biskra, Béchar et quelques zones du Hoggar et Tassili. En fin, la troisième partie porte sur la distribution des lignées génétiques dans le Maghreb. Les objectif de cette partie est localiser les zones de sutures entre les lignées génétiques divergentes des populations de l’est et de l’ouest du Maghreb et d’essayer de comprendre les mécanismes qui ont conduit à ce patron de diversité génétique. Pour répondre à ces questions, j’ai effectué une phylogéographie comparées sur 11 espèces de reptiles et amphibiens à distribution continue et large dans le Maghreb. Deux zones de sutures ont été identifiées : une zone à la frontière de l’Algérie et du Maroc, l’autre EN Kabylie à l’ouest de la vallée de la Soummam. Les divergences entre les clades est et les clades ouest ont eu lieu entre la période pré-messinienne jusqu’au à la limite plio-pleistocène et se seraient maintenues dans des refuges climatiques à l’est et à l’ouest du Maghreb. / Algeria is a case study of biodiversity ignorance. To date, there are neither complete inventories for any taxa nor atlas across the country! Yet, Algeria is of great importance for global biodiversity. The coastal area of Algeria is part of the global biodiversity hostpot which is the Mediterranean perimeter and has several regional red spots of biodiversity. Moreover, the Saharan part encompasses a diversity of endemic organisms adapted to the strong conditions of drought. The Algerian authorities are deploying an ambitious project for conservation aiming to reach 50% of the country's surface as protected areas! However, the location of these protected areas and their management don’t obey to a scientific evidence based, but are rather based on experts opinion. The main aim of this thesis is the study of the biodiversity ignorance distribution in Algeria by focusing on the "Linnean, Wallacean, and Darwinian Shortfalls" and to contribute to reduce them. The first chapter aims at reducing the Linnean Shortfall by proposing 1) a first checklist of reptiles and amphibians of Algeria which is the result of an accurate review of scientific publications on these taxa in North Africa. 2) a first pre-assessment of the conservation status of reptiles and amphibians of Algeria for the production of the first national red list. The second part of this manuscript deals with the ignorance of the geographical distribution of species. The purpose of this part is to map the ignorance which is defined as the difference between the expected specific richness diversity and the observed specific richness. The predicted species richness was modelled with two approaches: 1 ecological niche modeling with the maximum entropy method (MaxEnt) to predict the suitable habitats for each species and then add the different binary layers of species presence to calculate the specific richness. 2) Minimum convex polygon method was used to create range maps of each species and were auditioned to obtain predicted species richness. Both approaches have shown the same trend at a national scale: the concentration of the richest areas along the Saharan Atlas and the high plateaux which are the transition zone between the Sahara and the the Mediterranean part of Algeria. The opposition of the Saharan with a low species richness and the northern part with a higher species richness. Finally, the Saharan massifs of the Hoggar and Tassili form a very distinct zone with a much greater wealth compared to the rest of the Sahara. In terms of gaps, in the northern part, Kabylie, El Kala National Park and the Oran region are fairly well surveyed. In the Sahara, only a few points are clearly well prospected as Biskra, Bechar and some areas of the Hoggar and Tassili. The third part deals with the distribution of genetic llineages in the Maghreb. The aim of this section is to locate the phylogeographic breaks between the divergent eastern and western populations of the Maghreb and to try to understand the mechanisms that led to this pattern of genetic diversity. To answer these questions, I carried out a comparative phylogeography on 11 species of reptiles and amphibians with continuous and wide distribution in the Maghreb. Two suture zones have been identified: one zone on the border of Algeria and Morocco, the other in Kabylia west of the Soummam valley. The divergences between the eastern clades and the western clades occurred between the pre-Messinian periods up to the plio-pleistocene boundary and were maintained in climatic refugia in the east and west of the Maghreb.
5

Effets des changements climatiques sur la biodiversité / Effects of climate change on biodiversity

Bellard, Céline 19 November 2013 (has links)
Nous traversons actuellement une crise de perte de la biodiversité sans précédant. La dégradation des sols et la perte d’habitat, la pollution, la surexploitation et les invasions biologiques contribuent à cette perte mondiale de biodiversité. Par ailleurs, le changement climatique et ses interactions avec les autres menaces, sont probablement l’un des défis majeurs des prochaines décennies pour la biodiversité. À l’heure actuelle, en raison de la multiplication des études et des approches employées, il est difficile d’avoir une vision synthétique des conséquences potentielles de ces changements sur la biodiversité. L’objectif principal de ce travail de thèse a été d’améliorer la caractérisation et la quantification des différents impacts des changements climatiques sur la biodiversité, à l’échelle mondiale par des approches de modélisations et de méta-analyses. Une première partie de mes travaux a ainsi porté sur les conséquences potentielles de la hausse du niveau des mers sur les hotspots insulaires, au cours de laquelle j’ai mis en évidence les conséquences majeures d’une telle hausse pour certains de ces hotspots. Je me suis ensuite intéressée à l’étude des effets conjugués des changements climatiques et des changements d’utilisation des sols sur les invasions biologiques à l’échelle mondiale. Cette partie a permis de mettre en évidence que les conséquences des changements climatiques et des changements d’utilisation des sols sur les espèces invasives dépendent de la région, du taxon et de l’espèce considérée. Ainsi, j’ai mis en évidence que certaines régions pourraient être moins favorables à la présence d’espèce invasives dans le futur. En outre, cette partie a également mis en évidence que les hotspots majoritairement composés d’îles étaient particulièrement favorables à la présence de ces espèces invasives. Finalement, dans une dernière partie, j’ai étudié les conséquences des menaces futures pour les hotspots de biodiversité dans une perspective de conservation. Cette partie a notamment permis d’établir des priorités de recherche et de conservation entre les hotspots de biodiversité en tenant compte des futures menaces qui pèsent sur la biodiversité à l’échelle des hotspots, mais également au sein même des hotspots de biodiversité. Cependant, la mise en œuvre de plans de gestion de sauvegarde d’habitats ou d’espèces ne pourra se faire qu’en intensifiant les collaborations avec l’ensemble des acteurs impliqués. Plus généralement, la mise en œuvre de stratégies d’atténuation et d’adaptation efficaces aux changements climatiques ne pourra pas avoir lieu sans un soutien du grand public. / Global biodiversity is changing at an unprecedented rate due to loss of habitat, biological invasions, pollution, overexploitation. Furthermore, climate changes and their synergies with other threats will probably become the main drivers of biodiversity loss in the next century. Nowadays, the multiplicity of approaches and the resulting variability in projections make it difficult to get a clear picture of the future of biodiversity due to climate change. Yet, the majority of models indicate alarming consequences for biodiversity, with the worst- case scenarios leading to an increase of extinction rates. The aim of this thesis was to improve the knowledge about of the different consequences of climate change on biodiversity worldwide. To do that I mainly used modelisation and meta-analyses approaches. The first part of my work was to investigate the consequences of sea level rise for the ten insular biodiversity hotspot and their endemic species, during which I highlighted that between 6 and 19% of the islands would be entirely submerged. Then I studied the effects of climate and land use changes on biological invasions worldwide. The results showed that invasives species response to climate and land use changes depend on region, taxa and species considered. We also emphasized that some regions could lose a significant number of invasive alien species. Besides, we also found that hotspot that are mainly islands or group of islands are highly suitable for invasive species. Finally, in the last part, I quantified the exposure of biodiversity hotspots to the combined effects of climate change, land use change and biological invasions. This work highlighted the pressing need to consider different drivers of global change in conservation planning. In addition, we established some prioritization framework among the hotspot. Finally, conservation strategies to protect habitat and species under global changes, can only be achieved through closed collaboration with park managers. Overall, implementation of effective adaptation strategies to climate change can only succeed with public support.
6

Diversidade evolutiva de morcegos: padrões geográficos e aplicações em conservação / Evolutive diversity of bats: geographic patterns and conservation applications

Peixoto, Franciele Parreira 18 March 2013 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2014-09-23T21:19:16Z No. of bitstreams: 2 Peixoto, Franciele Parreira-Dissertação-2013.pdf: 995120 bytes, checksum: 365969ffce47a58af2a011eb0370ed04 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-09-23T21:58:54Z (GMT) No. of bitstreams: 2 Peixoto, Franciele Parreira-Dissertação-2013.pdf: 995120 bytes, checksum: 365969ffce47a58af2a011eb0370ed04 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-23T21:58:54Z (GMT). No. of bitstreams: 2 Peixoto, Franciele Parreira-Dissertação-2013.pdf: 995120 bytes, checksum: 365969ffce47a58af2a011eb0370ed04 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2013-03-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Aim: To investigate global patterns of phylobetadiversity (PBD) in bats, with the purpose to better understand the mechanisms underlying current biodiversity patterns. We also aimed to use a metric that allows partitioning PBD into two components to distinguish the relative roles of local (e.g. lineage filtering) and regional processes (e.g. speciation) in shaping broad-scale patterns of PBD. Furthermore, we analyzed the distance-decay relationship of phylogenetic beta diversity to provide more information about factors that act in the PBD patterns. Location: global, delimited by biogeographic regions. Methods: Using the global distribution of bats and a supertree available for most species, we calculated PBD using the complement of phylosor index. We used a null model to test if two assemblages were more or less phylogenetically dissimilar than expected by chance. In addition, we decoupled PBD into turnover and nestednessresultant components, providing information about two factors that produce differences in assemblage phylogenetic composition. We also performed a Mantel analysis to analyze the distance-decay patterns of PBD and its two components. Results: The most striking difference in PBD was found between the Old and New World “phylogenetic composition”. We found the lowest values of PBD between adjacent regions (i.e., Neotropical/Neartic; Indo-Malay/Paleartic), revealing a strong geographical structure in PBD. These values were even lower when the turnover component was analyzed, demonstrating the differences in the role of regional processes in shaping regional diversity. On the other hand, we found out that for some adjacent regions (e.g., Afrotropical/Paleartic), the observed PBD was higher than expected by chance and comparatively different from expected by the distance decay relationship. This value remained high, even when we analyzed just the PBD turnover component. This demonstrates that although these regions are relatively close in space, there are other factors driving phylogenetic differences between them (e.g. an environmental barrier). Main conclusions: Our analyses revealed differences in the expected patterns of bat PBD among regions, suggesting that at broad scales, besides the effects of distance and geographic barriers, we also have to consider the importance of environmental gradients when studying the phylogenetic origin of bat assemblages. / A abordagem mais comum no uso de PD (diversidade filogenética) para conservação é selecionar locais com maior diversidade evolutiva. Essa estratégia parte do pressuposto de que locais com maior quantidade de PD indicam maior potencial para respostas evolutivas a mudanças ambientais futuras. No entanto, há um crescente debate sobre se as prioridades de conservação deveriam também ser voltadas para locais com baixo valor de PD, que podem representar centros de diversificação de espécies ou “berçários de diversidade”. Alguns trabalhos têm testado se os hotspots globais de biodiversidade, baseados em riqueza, também representam locais de desproporcional concentração de história evolutiva. Nós testamos aqui se os hotspots contêm mais, menos ou igual diversidade filogenética (PD) que o esperado por uma amostragem ao acaso de espécies em qualquer posição na filogenia, para a ordem Chiroptera. Buscamos responder qual a real contribuição de cada hotspot para a conservação de padrões e processos relacionados à diversidade filogenética. Nós utilizamos uma supertree disponível para a maioria das espécies da ordem, e dados de distribuição das espécies. Nós calculamos o PD para cada hotspot separadamente e utilizamos um modelo nulo para obter os valores esperados dado a riqueza. De 34 hotspots, apenas um apresentou maior PD do que o esperado, treze apresentaram valores menores e o restante valores iguais ao esperado. Nós demonstramos que a relação entre PD e riqueza varia entre regiões biogeográficas, de modo que não há como fazer generalizações acerca da contribuição dos hotspots para a conservação de diversidade evolutiva. De modo geral nossos resultados demonstram que devido ao fato da história evolutiva variar regionalmente, também devem ser estabelecidas as prioridades de conservação nessa escala.
7

Modeling of vegetation diversity and a national conservation planning: example of Russia / Modeling of vegetation diversity and a national conservation planning: example of Russia

Venevskaia, Irina January 2004 (has links)
Die übergreifende Zielsetzung meiner Studie ist eine Ausarbeitung quantitativer Methoden zur nationalen nationale Schutzplanung in Übereinstimmung mit dem internationalen Ansatz. Diese Zielsetzung erfordert eine Lösung der folgenden Probleme:<br><br> 1) Wie lässt sich Vegetationsvielfalt in grober Auflösung auf Basis abiotischen Faktoren einschätzen?<br> 2) Wie ist der Ansatz 'globaler Hotspots' für die Eingrenzung nationaler Biodiversitäts-Hotspots zu übernehmen?<br> 3) Wie erfolgt die Auswahl von quantitativen Schutzzielen unter Einbezug der Unterschiede nationaler Hotspots bei Umweltbedingungen und durch den Menschen Bedrohung?<br> 4) Wie sieht der Entwurf eines großflächigen nationalen Naturschutzkonzepts aus, das die hierarchische Natur der Artenvielfalt reflektiert? Die Fallstudie für nationale Naturschutzplanung ist Russland. <br><br> Die nachfolgenden theoretischen Schlüsse wurden gezogen:<br> · Großräumige Vegetationsdiversität ist weitgehend vorhersagbar durch klimabedingte latente Wärme für Verdunstung und topographische Landschaftsstruktur, beschrieben als Höhendifferenz. Das klimabasierte Modell reproduziert die beobachtete Artenanzahl von Gefäßpflanzen für verschiedene Gebiete auf der Welt mit einem durchschnittlichen Fehler von 15% <br> · Nationale Biodiversitäts-Hotspots können auf Grundlage biotischer oder abiotischer Daten kartographiert werden, indem als Korrektur für ein Land die quantitativen Kriterien für Planzenendemismus und Landnutzung des Ansatzes der 'globalen Hotspots' genutzt wird <br> · Quantitative Naturschutzziele, die die Unterschiede zwischen nationalen Biodiversitäts-Hotspots in Bezug auf Umweltbedingungen und der Bedrohung durch den Menschen miteinbeziehen, können mit nationalen Daten über Arten auf der Roten Liste gesetzt werden <br> · Ein großräumiger nationaler Naturschutzplan, der die hierarchische Natur der Artenvielfalt berücksichtigt, kann durch eine Kombination von abiotischer Methode im nationalen Bereich (Identifikation großräumiger Hotspots) und biotischer Methode im regionalen Bereich (Datenanalyse der Arten auf der Roten Liste) entworfen werden / The overall objective of the study is an elaboration of quantitative methods for national conservation planning, coincident with the international approach ('hotspots' approach). This objective requires a solution of following problems: <br><br> 1) How to estimate large scale vegetation diversity from abiotic factors only?<br> 2) How to adopt 'global hotspots' approach for bordering of national biodiversity hotspots?<br> 3) How to set conservation targets, accounting for difference in environmental conditions and human threats between national biodiversity hotspots?<br> 4) How to design large scale national conservation plan reflecting hierarchical nature of biodiversity?<br> The case study for national conservation planning is Russia. <br><br> Conclusions:<br> · Large scale vegetation diversity can be predicted to a major extent by climatically determined latent heat for evaporation and geometrical structure of landscape, described as an altitudinal difference. The climate based model reproduces observed species number of vascular plant for different areas of the world with an average error 15%<br> · National biodiversity hotspots can be mapped from biotic or abiotic data using corrected for a country the quantitative criteria for plant endemism and land use from the 'global hotspots' approach<br> · Quantitative conservation targets, accounting for difference in environmental conditions and human threats between national biodiversity hotspots can be set using national data for Red Data book species <br> · Large scale national conservation plan reflecting hierarchical nature of biodiversity can be designed by combination of abiotic method at national scale (identification of large scale hotspots) and biotic method at regional scale (analysis of species data from Red Data book)
8

Biogeografia da conservação frente à expansão agrícola: conflitos e prioridades / Conservation Biogeography faced with agricultural expansion: conflicts and priorities

DOBROVOLSKI, Ricardo 10 April 2012 (has links)
Made available in DSpace on 2014-07-29T16:23:34Z (GMT). No. of bitstreams: 1 Tese Ricardo Dobrovolski.pdf: 1981880 bytes, checksum: 8c60352c3d999171ab957f065b32a9db (MD5) Previous issue date: 2012-04-10 / Agriculture is the human activity with the greatest impact on the environment. Specifically, it represents the greatest threat to biodiversity. In the future, this activity should expand due to population growth, increased consumption and production of biofuels from food. To understand the possible impacts of this expansion on biodiversity, we used scenarios of land use change between 1970 and 2100 from IMAGE (Integrated Model to Access Global Environment) to test the following hypotheses: (i) areas considered as global priorities for conservation by international NGOs will be preferentially impacted by agricultural expansion in the XXI century, (ii) there is a conflict between the priority areas for carnivores conservation and agricultural expansion, and this conflict can be reduced by incorporating information on agricultural expansion in the prioritization process, (iii) the integration among countries for conservation planning may benefit both biodiversity and agricultural productivity, (iv) Brazilian protected areas will be impacted by agricultural expansion in the future and this impact will differ between protected areas of integral protection and those of sustainable use. We found that: (i) the impact on priority areas for conservation depends on the criteria by which they were set, so that areas defined by its high vulnerability are currently most affected than those of low vulnerability. Throughout the XXI century this impact is expected to increase, although the difference between the two types of priorities remains, except for High Biodiversity Wilderness Areas, defined by their low vulnerability in current time, but for which most pessimistic scenarios forecast an impact similar to priority areas of high vulnerability, (ii) there is a high spatial congruence between areas with high agricultural use in the future and priority areas for conservation of carnivores. This conflict can be reduced if the prioritization process include information on agricultural expansion; this incorporation, however, causes a profound change in the distribution of priority areas and reduces the number of protected carnivore populations, (iii) the integration of countries to create a set of priority areas for conservation that represents 17% of the land surface can protect 19% more mammal populations without reducing food production, compared to a strategy in which each country seeks to protect its territory independently, and (iv) the impact of agriculture in Brazil is expected to increase until the end of the century, threatening even the protected areas and their surroundings. This impact, however, should not be different between areas of sustainable use and those of integral protection. We conclude that agricultural expansion should remain a major threat to biodiversity in the future, even in areas of special interest for conservation. Conservation actions should be planned taking into account this threat in order to reduce their potential impacts. For this, countries like Brazil should strengthen its surveillance on agricultural expansion and on how this activity is developed. Furthermore, the integration of international conservation efforts should be pursued, given its benefits for biodiversity and food production. Finally, humanity must choose methods of agricultural production that reduce its impacts, including avoiding its future expansion, so as to meet the increasing needs of a human population globally. / A agricultura é a atividade humana com maior impacto sobre o ambiente. Particularmente, ela representa a maior ameaça à biodiversidade. No futuro, essa atividade deve expandir-se com o aumento populacional humano, o aumento do consumo e a produção de biocombustíveis a partir dos alimentos. Para entender os possíveis impactos dessa expansão sobre a biodiversidade, nós utilizamos cenários de mudança de uso do solo entre 2000 e 2100 do IMAGE (Integrated Model to Access Global Environment) para testar as seguintes hipóteses: (i) as áreas consideradas como prioridades globais de conservação pelas ONGs internacionais serão preferencialmente impactadas pela expansão agrícola no século XXI; (ii) há um conflito entre áreas prioritárias para a conservação de carnívoros e a expansão agrícola e esse conflito pode ser reduzido com a incorporação da informação sobre expansão agrícola no processo de priorização; (iii) a integração entre os países para o planejamento da conservação pode ser favorável à proteção da biodiversidade e à produção agrícola; (iv) no Brasil, as áreas protegidas serão impactadas pela expansão agrícola no futuro e esse impacto será diferente entre áreas de proteção integral e áreas de uso sustentável. Nós encontramos os seguintes resultados: (i) o impacto sobre as áreas prioritárias para a conservação depende dos critérios pelos quais elas foram definidas, assim, as áreas definidas por sua alta vulnerabilidade estão atualmente mais impactadas do que áreas de baixa vulnerabilidade. Ao longo do século XXI, o impacto geral da agricultura deve aumentar, mas a diferença entre os dois tipos de prioridades se mantém, exceto para as High Biodiversity Wilderness Areas, definidas por sua baixa vulnerabilidade, mas que nos cenários mais pessimistas podem ter um impacto agrícola semelhante ao das áreas de alta vulnerabilidade; (ii) há uma alta congruência espacial entre áreas com elevado uso agrícola no futuro e áreas prioritárias para a conservação de carnívoros; esse conflito pode ser reduzido se o processo de priorização incluir as informações sobre a expansão agrícola; a incorporação dessa informação, entretanto, provoca uma profunda alteração na distribuição das áreas prioritárias e reduz o número de populações de carnívoros protegidas; (iii) a integração entre os países para a criação de um conjunto de áreas prioritárias para conservação que represente 17% da superfície terrestre pode proteger 19% mais populações de mamíferos sem reduzir a produção de alimentos, se comparada a uma estratégia em que cada país busque proteger seu território independentemente; (iv) o impacto da agricultura no Brasil deve aumentar até o fim do século XXI, ameaçando inclusive as áreas protegidas e o seu entorno. Esse impacto, porém, não deve ser diferente entre as áreas de uso sustentável e aquelas de proteção integral. Assim, a expansão agrícola deve continuar a ser uma importante ameaça à biodiversidade no futuro, atingindo inclusive áreas de especial interesse para a conservação. As ações de conservação devem ser planejadas levando em consideração essa ameaça, a fim de reduzir seus impactos potenciais. Para isso, países como o Brasil devem reforçar sua vigilância sobre a expansão agrícola e a maneira como essa atividade é desenvolvida. Além disso, a integração internacional dos esforços de conservação deve ser buscada, dados seus benefícios para a biodiversidade e para a produção de alimentos. E por fim, a humanidade deve optar por formas de produção agrícola que reduzam seus impactos, inclusive evitando sua expansão futura, mas que possam satisfazer as necessidades da população humana globalmente.

Page generated in 0.4392 seconds